A dynamical mean-field theory for learning in restricted Boltzmann machines

被引:9
|
作者
Cakmak, Burak [1 ]
Opper, Manfred [1 ]
机构
[1] Tech Univ Berlin, Artificial Intelligence Grp, Berlin, Germany
关键词
cavity and replica method; machine learning; message-passing algorithms; spin glasses; STATISTICAL-MECHANICS;
D O I
10.1088/1742-5468/abb8c9
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We define a message-passing algorithm for computing magnetizations in restricted Boltzmann machines, which are Ising models on bipartite graphs introduced as neural network models for probability distributions over spin configurations. To model nontrivial statistical dependencies between the spins' couplings, we assume that the rectangular coupling matrix is drawn from an arbitrary bi-rotation invariant random matrix ensemble. Using the dynamical functional method of statistical mechanics we exactly analyze the dynamics of the algorithm in the large system limit. We prove the global convergence of the algorithm under a stability criterion and compute asymptotic convergence rates showing excellent agreement with numerical simulations.
引用
收藏
页数:32
相关论文
共 50 条
  • [41] Beyond dynamical mean-field theory of neural networks
    Massimiliano Muratori
    Bruno Cessac
    BMC Neuroscience, 14 (Suppl 1)
  • [42] Two-site dynamical mean-field theory
    Potthoff, M
    PHYSICAL REVIEW B, 2001, 64 (16)
  • [43] Dynamical mean-field theory of indirect magnetic exchange
    Titvinidze, Irakli
    Schwabe, Andrej
    Rother, Niklas
    Potthoff, Michael
    PHYSICAL REVIEW B, 2012, 86 (07)
  • [44] Electronic structure calculations with dynamical mean-field theory
    Kotliar, G.
    Savrasov, S. Y.
    Haule, K.
    Oudovenko, V. S.
    Parcollet, O.
    Marianetti, C. A.
    REVIEWS OF MODERN PHYSICS, 2006, 78 (03) : 865 - 951
  • [45] Dynamical Mean-Field Theory for Correlated Electron Materials
    Vollhardt, D.
    Anisimov, V. I.
    Skornyakov, S. L.
    Leonov, I.
    MATERIALS TODAY-PROCEEDINGS, 2019, 14 : 176 - 180
  • [46] Dynamical mean-field theory as a random loop problem
    Keiter, H
    Leuders, T
    EUROPHYSICS LETTERS, 2000, 49 (06): : 801 - 806
  • [47] Dynamical vertex approximation: A step beyond dynamical mean-field theory
    Toschi, A.
    Katanin, A. A.
    Held, K.
    PHYSICAL REVIEW B, 2007, 75 (04):
  • [48] Mean-field theory of meta-learning
    Plewczynski, Dariusz
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2009,
  • [49] SCALABLE LEARNING FOR RESTRICTED BOLTZMANN MACHINES
    Barshan, Elnaz
    Fieguth, Paul
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 2754 - 2758
  • [50] Efficient evaluation of the polarization function in dynamical mean-field theory
    Krien, Friedrich
    PHYSICAL REVIEW B, 2019, 99 (23)