Modelling energy demand response using long short-term memory neural networks

被引:8
|
作者
Mesa Jimenez, Jose Joaquin [1 ,2 ,3 ]
Stokes, Lee [3 ]
Moss, Chris [3 ]
Yang, Qingping [1 ]
Livina, Valerie N. [2 ]
机构
[1] Brunel Univ London, Kingston Lane, Uxbridge UB8 3PH, Middx, England
[2] Natl Phys Lab, Hampton Rd, Teddington TW11 0LW, Middx, England
[3] Mitie, Level 12,32 London Bridge St, London SE1 9SG, England
基金
英国工程与自然科学研究理事会;
关键词
Load forecasting; Demand side response; Machine learning; Long short-term memory; Triad forecasting; Electricity demand; Neural networks;
D O I
10.1007/s12053-020-09879-z
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We propose a method for detecting and forecasting events of high energy demand, which are managed at the national level in demand side response programmes, such as the UK Triads. The methodology consists of two stages: load forecasting with long short-term memory neural network and dynamic filtering of the potential highest electricity demand peaks by using the exponential moving average. The methodology is validated on real data of a UK building management system case study. We demonstrate successful forecasts of Triad events withRRMSE approximate to 2.2%andMAPE approximate to 1.6%and general applicability of the methodology for demand side response programme management, with reduction of energy consumption and indirect carbon emissions.
引用
收藏
页码:1263 / 1280
页数:18
相关论文
共 50 条
  • [21] Intrusion Detection Using Multilayer Perceptron and Neural Networks with Long Short-Term Memory
    Borisenko, B. B.
    Erokhin, S. D.
    Fadeev, A. S.
    Martishin, I. D.
    [J]. 2021 SYSTEMS OF SIGNAL SYNCHRONIZATION, GENERATING AND PROCESSING IN TELECOMMUNICATIONS (SYNCHROINFO), 2021,
  • [22] Classification of Antibacterial Peptides Using Long Short-Term Memory Recurrent Neural Networks
    Youmans, Michael
    Spainhour, John C. G.
    Qiu, Peng
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2020, 17 (04) : 1134 - 1140
  • [23] Session Based Recommendations Using Recurrent Neural Networks - Long Short-Term Memory
    Dobrovolny, Michal
    Selamat, Ali
    Krejcar, Ondrej
    [J]. INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2021, 2021, 12672 : 53 - 65
  • [24] Automatic Pitch Accent Detection Using Long Short-Term Memory Neural Networks
    Wu, Yizhi
    Li, Sha
    Li, Hongyan
    [J]. 2019 INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING SYSTEMS (SPSS 2019), 2019, : 41 - 45
  • [25] Shooting sound analysis using convolutional neural networks and long short-term memory
    Kang, Se Hyeok
    Cho, Ji Woong
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF KOREA, 2022, 41 (03): : 312 - 318
  • [26] Statistical downscaling of precipitation using long short-term memory recurrent neural networks
    Saptarshi Misra
    Sudeshna Sarkar
    Pabitra Mitra
    [J]. Theoretical and Applied Climatology, 2018, 134 : 1179 - 1196
  • [27] LATE REVERBERATION SUPPRESSION USING RECURRENT NEURAL NETWORKS WITH LONG SHORT-TERM MEMORY
    Zhao, Yan
    Wang, DeLiang
    Xu, Buye
    Zhang, Tao
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 5434 - 5438
  • [28] Statistical downscaling of precipitation using long short-term memory recurrent neural networks
    Misra, Saptarshi
    Sarkar, Sudeshna
    Mitra, Pabitra
    [J]. THEORETICAL AND APPLIED CLIMATOLOGY, 2018, 134 (3-4) : 1179 - 1196
  • [29] Forecasting Methane Data Using Multivariate Long Short-Term Memory Neural Networks
    Luo, Ran
    Wang, Jingyi
    Gates, Ian
    [J]. ENVIRONMENTAL MODELING & ASSESSMENT, 2024, 29 (03) : 441 - 454
  • [30] Industrial Financial Forecasting using Long Short-Term Memory Recurrent Neural Networks
    Ali, Muhammad Mohsin
    Babar, Muhammad Imran
    Hamza, Muhammad
    Jehanzeb, Muhammad
    Habib, Saad
    Khan, Muhammad Sajid
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (04) : 88 - 99