Modelling energy demand response using long short-term memory neural networks

被引:8
|
作者
Mesa Jimenez, Jose Joaquin [1 ,2 ,3 ]
Stokes, Lee [3 ]
Moss, Chris [3 ]
Yang, Qingping [1 ]
Livina, Valerie N. [2 ]
机构
[1] Brunel Univ London, Kingston Lane, Uxbridge UB8 3PH, Middx, England
[2] Natl Phys Lab, Hampton Rd, Teddington TW11 0LW, Middx, England
[3] Mitie, Level 12,32 London Bridge St, London SE1 9SG, England
基金
英国工程与自然科学研究理事会;
关键词
Load forecasting; Demand side response; Machine learning; Long short-term memory; Triad forecasting; Electricity demand; Neural networks;
D O I
10.1007/s12053-020-09879-z
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We propose a method for detecting and forecasting events of high energy demand, which are managed at the national level in demand side response programmes, such as the UK Triads. The methodology consists of two stages: load forecasting with long short-term memory neural network and dynamic filtering of the potential highest electricity demand peaks by using the exponential moving average. The methodology is validated on real data of a UK building management system case study. We demonstrate successful forecasts of Triad events withRRMSE approximate to 2.2%andMAPE approximate to 1.6%and general applicability of the methodology for demand side response programme management, with reduction of energy consumption and indirect carbon emissions.
引用
收藏
页码:1263 / 1280
页数:18
相关论文
共 50 条
  • [1] Modelling energy demand response using long short-term memory neural networks
    JoséJoaquìn Mesa Jiménez
    Lee Stokes
    Chris Moss
    Qingping Yang
    Valerie N. Livina
    [J]. Energy Efficiency, 2020, 13 : 1263 - 1280
  • [2] Short-Term Traffic Prediction Using Long Short-Term Memory Neural Networks
    Abbas, Zainab
    Al-Shishtawy, Ahmad
    Girdzijauskas, Sarunas
    Vlassov, Vladimir
    [J]. 2018 IEEE INTERNATIONAL CONGRESS ON BIG DATA (IEEE BIGDATA CONGRESS), 2018, : 57 - 65
  • [3] Warehouse Demand Forecasting based on Long Short-Term Memory neural networks
    Hodzic, Kerim
    Hasic, Haris
    Cogo, Emir
    Juric, Zeljko
    [J]. 2019 XXVII INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATION AND AUTOMATION TECHNOLOGIES (ICAT 2019), 2019,
  • [4] Long Short-Term Memory (LSTM) Neural Networks Applied to Energy Disaggregation
    Tongta, Anawat
    Chooruang, Komkrit
    [J]. 2020 8TH INTERNATIONAL ELECTRICAL ENGINEERING CONGRESS (IEECON), 2020,
  • [5] PowerLSTM: Power Demand Forecasting Using Long Short-Term Memory Neural Network
    Cheng, Yao
    Xu, Chang
    Mashima, Daisuke
    Thing, Vrizlynn L. L.
    Wu, Yongdong
    [J]. ADVANCED DATA MINING AND APPLICATIONS, ADMA 2017, 2017, 10604 : 727 - 740
  • [6] Dialog State Tracking Using Long Short-term Memory Neural Networks
    Yang, Xiaohao
    Liu, Jia
    [J]. 16TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2015), VOLS 1-5, 2015, : 1800 - 1804
  • [7] An Incremental Learning Approach Using Long Short-Term Memory Neural Networks
    Lemos Neto, Alvaro C.
    Coelho, Rodrigo A.
    de Castro, Cristiano L.
    [J]. JOURNAL OF CONTROL AUTOMATION AND ELECTRICAL SYSTEMS, 2022, 33 (05) : 1457 - 1465
  • [8] Deflated reputation using multiplicative long short-term memory neural networks
    Ma, Yixuan
    Zhang, Zhenji
    Li, Deming
    Tang, Mincong
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2021, 118 : 198 - 207
  • [9] An Incremental Learning Approach Using Long Short-Term Memory Neural Networks
    Álvaro C. Lemos Neto
    Rodrigo A. Coelho
    Cristiano L. de Castro
    [J]. Journal of Control, Automation and Electrical Systems, 2022, 33 : 1457 - 1465
  • [10] SPOKEN LANGUAGE UNDERSTANDING USING LONG SHORT-TERM MEMORY NEURAL NETWORKS
    Yao, Kaisheng
    Peng, Baolin
    Zhang, Yu
    Yu, Dong
    Zweig, Geoffrey
    Shi, Yangyang
    [J]. 2014 IEEE WORKSHOP ON SPOKEN LANGUAGE TECHNOLOGY SLT 2014, 2014, : 189 - 194