Nonparametric Regression via StatLSSVM

被引:0
|
作者
De Brabanter, Kris [1 ]
Suykens, Johan A. K. [2 ]
De Moor, Bart [3 ]
机构
[1] Iowa State Univ, Dept Stat & Comp Sci, Ames, IA 50011 USA
[2] Katholieke Univ Leuven, Dept Elect Engn ESAT STADIUS, B-3001 Louvain, Belgium
[3] Katholieke Univ Leuven, ESAT STADIUS, iMinds Future Hlth, B-3001 Louvain, Belgium
来源
JOURNAL OF STATISTICAL SOFTWARE | 2013年 / 55卷 / 02期
基金
欧洲研究理事会;
关键词
nonparametric regression; pointwise confidence interval; uniform confidence interval; volume-of-tube-formula; asymptotic normality; robustness; reweighting; correlated error; bimodal kernel; MATLAB; KERNEL-BASED REGRESSION; CROSS-VALIDATION; MODEL SELECTION; SIMPLEX-METHOD; ROBUSTNESS;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a new MATLAB toolbox under Windows and Linux for nonparametric regression estimation based on the statistical library for least squares support vector machines (StatLSSVM). The StatLSSVM toolbox is written so that only a few lines of code are necessary in order to perform standard nonparametric regression, regression with correlated errors and robust regression. In addition, construction of additive models and pointwise or uniform confidence intervals are also supported. A number of tuning criteria such as classical cross-validation, robust cross-validation and cross-validation for correlated errors are available. Also, minimization of the previous criteria is available without any user interaction.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [31] Assessment of nonlinear dose-response relationships via nonparametric regression
    Wu, Shunyao
    Zhang, Qi
    Li, Yuanzhang
    Liang, Hua
    [J]. JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2024, 34 (01) : 136 - 145
  • [32] A nonparametric approach to pricing and hedging derivative securities via genetic regression
    Trigueros, J
    [J]. PROCEEDINGS OF THE IEEE/IAFE 1997 COMPUTATIONAL INTELLIGENCE FOR FINANCIAL ENGINEERING (CIFER), 1997, : 1 - 7
  • [33] PIVOTAL ESTIMATION VIA SQUARE-ROOT LASSO IN NONPARAMETRIC REGRESSION
    Belloni, Alexandre
    Chernozhukov, Victor
    Wang, Lie
    [J]. ANNALS OF STATISTICS, 2014, 42 (02): : 757 - 788
  • [34] ROBUST ESTIMATES IN MULTIVARIATE NONPARAMETRIC REGRESSION VIA LEAST ABSOLUTE  DEVIATIONS
    旋沛德
    郑忠国
    [J]. Acta Mathematica Scientia, 1996, (S1) : 57 - 69
  • [35] Variable selection for nonparametric quantile regression via measurement error model
    Peng Lai
    Xi Yan
    Xin Sun
    Haozhe Pang
    Yanqiu Zhou
    [J]. Statistical Papers, 2023, 64 : 2207 - 2224
  • [36] Nonparametric quantile regression models via majorization minimization-algorithm
    Jiang, Yunlu
    [J]. STATISTICS AND ITS INTERFACE, 2014, 7 (02) : 235 - 240
  • [37] Penalized Nonparametric Scalar-on-Function Regression via Principal Coordinates
    Reiss, Philip T.
    Miller, David L.
    Wu, Pei-Shien
    Hua, Wen-Yu
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2017, 26 (03) : 569 - 578
  • [38] Spectrally Sparse Nonparametric Regression via Elastic Net Regularized Smoothers
    Helwig, Nathaniel E.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2021, 30 (01) : 182 - 191
  • [39] Locally Adaptive Bayes Nonparametric Regression via Nested Gaussian Processes
    Zhu, Bin
    Dunson, David B.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2013, 108 (504) : 1445 - 1456
  • [40] Nonparametric predictive regression
    Kasparis, Ioannis
    Andreou, Elena
    Phillips, Peter C. B.
    [J]. JOURNAL OF ECONOMETRICS, 2015, 185 (02) : 468 - 494