Nonparametric Regression via StatLSSVM

被引:0
|
作者
De Brabanter, Kris [1 ]
Suykens, Johan A. K. [2 ]
De Moor, Bart [3 ]
机构
[1] Iowa State Univ, Dept Stat & Comp Sci, Ames, IA 50011 USA
[2] Katholieke Univ Leuven, Dept Elect Engn ESAT STADIUS, B-3001 Louvain, Belgium
[3] Katholieke Univ Leuven, ESAT STADIUS, iMinds Future Hlth, B-3001 Louvain, Belgium
来源
JOURNAL OF STATISTICAL SOFTWARE | 2013年 / 55卷 / 02期
基金
欧洲研究理事会;
关键词
nonparametric regression; pointwise confidence interval; uniform confidence interval; volume-of-tube-formula; asymptotic normality; robustness; reweighting; correlated error; bimodal kernel; MATLAB; KERNEL-BASED REGRESSION; CROSS-VALIDATION; MODEL SELECTION; SIMPLEX-METHOD; ROBUSTNESS;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a new MATLAB toolbox under Windows and Linux for nonparametric regression estimation based on the statistical library for least squares support vector machines (StatLSSVM). The StatLSSVM toolbox is written so that only a few lines of code are necessary in order to perform standard nonparametric regression, regression with correlated errors and robust regression. In addition, construction of additive models and pointwise or uniform confidence intervals are also supported. A number of tuning criteria such as classical cross-validation, robust cross-validation and cross-validation for correlated errors are available. Also, minimization of the previous criteria is available without any user interaction.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [1] Selective Nonparametric Regression via Testing
    Noskov, Fedor
    Fishkov, Alexander
    Panov, Maxim
    [J]. ASIAN CONFERENCE ON MACHINE LEARNING, VOL 222, 2023, 222
  • [2] ROBUST NONPARAMETRIC ESTIMATION VIA WAVELET MEDIAN REGRESSION
    Brown, Lawrence D.
    Cai, T. Tony
    Zhou, Harrison H.
    [J]. ANNALS OF STATISTICS, 2008, 36 (05): : 2055 - 2084
  • [3] Bayesian nonparametric binary regression via random tessellations
    Trippa, Lorenzo
    Muliere, Pietro
    [J]. STATISTICS & PROBABILITY LETTERS, 2009, 79 (21) : 2273 - 2280
  • [4] Local comparison of empirical distributions via nonparametric regression
    Antoniadis, A.
    Glad, I. K.
    Mohammed, H.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (12) : 2384 - 2405
  • [5] A note on testing the regression functions via nonparametric smoothing
    Song, Weixing
    Du, Juan
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2011, 39 (01): : 108 - 125
  • [6] Benchmark Dose Analysis via Nonparametric Regression Modeling
    Piegorsch, Walter W.
    Xiong, Hui
    Bhattacharya, Rabi N.
    Lin, Lizhen
    [J]. RISK ANALYSIS, 2014, 34 (01) : 135 - 151
  • [7] CONSISTENT SPECIFICATION TESTING VIA NONPARAMETRIC SERIES REGRESSION
    HONG, YM
    WHITE, H
    [J]. ECONOMETRICA, 1995, 63 (05) : 1133 - 1159
  • [8] Model checking in Tobit regression via nonparametric smoothing
    Koul, Hira L.
    Song, Weixing
    Liu, Shan
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 125 : 36 - 49
  • [9] Nonparametric frontier estimation via local linear regression
    Martins-Filho, Carlos
    Yao, Feng
    [J]. JOURNAL OF ECONOMETRICS, 2007, 141 (01) : 283 - 319
  • [10] Blind Regression: Nonparametric Regression for Latent Variable Models via Collaborative Filtering
    Lee, Christina E.
    Li, Yihua
    Shah, Devavrat
    Song, Dogyoon
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29