New Feedback Functions for Synchronizing Chaotic Maps

被引:0
|
作者
Ali, M. K. [1 ]
机构
[1] Univ Lethbridge, Dept Phys, Lethbridge, AB T1K 3M4, Canada
关键词
Chaos; Noise; Synchronization; Feedback; Maps; Control;
D O I
10.1155/S1026022698000016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Synchronization of chaotic maps is studied using the method of variable feedback. A general method is presented for generating feedback functions for maps. These feedback functions are found very efficient. Our study shows that when the driver and the response systems are fed by common noise, the noise does not affect synchronization. With different but weak noise added to the driver and response systems, approximate synchronization persists.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [21] Synchronizing a class of uncertain chaotic systems
    Chen, MY
    Zhou, DH
    Shang, Y
    PHYSICS LETTERS A, 2005, 337 (4-6) : 384 - 390
  • [22] Hybrid control for synchronizing a chaotic system
    Shieh, Cheng-Shion
    Hung, Rong-Ting
    APPLIED MATHEMATICAL MODELLING, 2011, 35 (08) : 3751 - 3758
  • [23] Generalized Chaotic Maps and Elementary Functions between Analysis and Implementation
    Sayed, Wafaa S.
    Hussien, Abdel-Latif E.
    Fahmy, Hossam A. H.
    Radwan, Ahmed G.
    2015 IEEE CONFERENCE ON ELECTRONICS, CIRCUITS, AND SYSTEMS (ICECS), 2015, : 506 - 507
  • [24] Synchronizing a chaotic laser by injecting a chaotic signal with a frequency offset
    A. P. Napartovich
    A. G. Sukharev
    Journal of Experimental and Theoretical Physics, 1999, 88 : 875 - 881
  • [25] Cost of synchronizing different chaotic systems
    Sarasola, C
    Torrealdea, FJ
    d'Anjou, A
    Graña, M
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2002, 58 (4-6) : 309 - 327
  • [26] A new watermarking method based on chaotic maps
    Zhang, JS
    Tian, L
    Tai, HM
    2004 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXP (ICME), VOLS 1-3, 2004, : 939 - 942
  • [27] Synchronizing a chaotic laser by injecting a chaotic signal with a frequency offset
    Napartovich, AP
    Sukharev, AG
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 1999, 88 (05) : 875 - 881
  • [28] New maximal-period sequences using extended nonlinear feedback shift registers based on chaotic maps
    Tsuneda, A
    Kuga, Y
    Inoue, T
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2002, E85A (06) : 1327 - 1332
  • [29] Dead-beat full state hybrid projective synchronization for chaotic maps using a scalar synchronizing signal
    Grassi, Giuseppe
    Miller, Damon A.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (04) : 1824 - 1830
  • [30] Random products of maps synchronizing on average
    Matias, Edgar
    Melo, Italo
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2020, 22 (08)