Binomial convolutions and determinant identities

被引:12
|
作者
Chu, WC
机构
[1] 75006 Paris
关键词
D O I
10.1016/S0012-365X(98)00368-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Binomial convolution identities of the Hagen-Rothe type with even and odd summation indices are demonstrated, which are used to establish several matrix multiplication formulas and determinant evaluations including the results of Andrews and Burge as special cases. (C) 1999 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:129 / 153
页数:25
相关论文
共 50 条
  • [1] Three binomial convolutions
    Knuth, DE
    [J]. SIAM REVIEW, 1998, 40 (04) : 990 - 991
  • [2] Multifold convolutions of binomial coefficients
    Li, Nadia N.
    Chu, Wenchang
    [J]. MATHEMATICAL COMMUNICATIONS, 2019, 24 (02) : 279 - 287
  • [3] A Binomial Determinant
    不详
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2014, 121 (05): : 462 - 462
  • [4] Binomial Convolutions for Rational Power Series
    Gessel, Ira M.
    Berkeley, Ishan Kar
    [J]. JOURNAL OF INTEGER SEQUENCES, 2024, 27 (01)
  • [5] On Divisibility of Convolutions of Central Binomial Coefficients
    Sepanski, Mark R.
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (01):
  • [6] On the Unimodality of Convolutions of Sequences of Binomial Coefficients
    Brown, Tricia Muldoon
    [J]. JOURNAL OF INTEGER SEQUENCES, 2019, 22 (02)
  • [7] Concavity of entropy along binomial convolutions
    Hillion, Erwan
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2012, 17 : 1 - 9
  • [8] Binomial determinant evaluations
    Chu, Wenchang
    di Claudio, Leontina Veliana
    [J]. ANNALS OF COMBINATORICS, 2005, 9 (04) : 363 - 377
  • [9] A DETERMINANT OF BINOMIAL EXPANSIONS
    KIRMSER, PG
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1967, 74 (02): : 205 - &
  • [10] Binomial Determinant Evaluations
    Wenchang Chu
    Leontina Veliana di Claudio
    [J]. Annals of Combinatorics, 2005, 9 : 363 - 377