Shape optimization of magnetic devices using Genetic Algorithms with dynamically adjustable parameters

被引:9
|
作者
Yokose, Y [1 ]
Cingoski, V
Kaneda, K
Yamashita, H
机构
[1] Kure Natl Coll Technol, Kure 7378506, Japan
[2] Hiroshima Univ, Fac Engn, Higashihiroshima 7398527, Japan
关键词
Genetic Algorithms; optimization methods; finite element methods; magnetic materials devices; magnetization processes;
D O I
10.1109/20.767341
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An improved method for inverse shape optimization of magnetic devices using the Genetic Algorithms(GAs) with dynamically adjustable parameters is presented. The proposed method starts from an initial population using large number of bits per chromosome enabling searching for the optimal solution in a wider region without aggravating the computational speed. Later, as the optimization process evolves, the searching space is gradually decreased by restriction of the number of bits and by translation and reduction of the searching space according to the values of the objective function, therefore, dynamically adjusting to the best fit solution decreasing the computation resources to a minimum. The obtained results exhibit acceleration of the optimization process and increase of the solution accuracy.
引用
收藏
页码:1686 / 1689
页数:4
相关论文
共 50 条
  • [31] Genetic algorithms in optimization of unpredetermined rotor shape
    Miljavec, D
    [J]. ELECTROMAGNETIC FIELDS IN ELECTRICAL ENGINEERING, 2002, 22 : 82 - 87
  • [32] Identification of Induction Machine Electrical Parameters using Genetic Algorithms Optimization
    Kampisios, Konstantinos
    Zanchetta, Pericle
    Gerada, Chris
    Trentin, Andrew
    [J]. 2008 IEEE INDUSTRY APPLICATIONS SOCIETY ANNUAL MEETING, VOLS 1-5, 2008, : 1834 - 1840
  • [33] Parameters Optimization for GECDS Using Response Surface Methodology and Genetic Algorithms
    Qi, Hongli
    Li, Tao
    Lin, Jing
    [J]. PROCEEDINGS OF 2015 IEEE 5TH INTERNATIONAL CONFERENCE ON ELECTRONICS INFORMATION AND EMERGENCY COMMUNICATION, 2015, : 198 - 202
  • [34] Optimization of monitoring parameters of a space tubular structure by using genetic algorithms
    Moura, Jose R. V., Jr.
    Steffen, Valder, Jr.
    Inman, Daniel J.
    [J]. MODELING, SIGNAL PROCESSING, AND CONTROL FOR SMART STRUCTURES 2008, 2008, 6926
  • [35] Optimization of neural network structure and learning parameters using genetic algorithms
    Han, SS
    May, GS
    [J]. EIGHTH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 1996, : 200 - 206
  • [36] Optimal parameters of protection devices for controlling hydraulic transient using genetic algorithms
    Alhwij, Mohammed Salah
    Nakhleh, Wissam
    [J]. AQUA-WATER INFRASTRUCTURE ECOSYSTEMS AND SOCIETY, 2024, 73 (03) : 623 - 636
  • [37] Optimization of Greenhouse Climate Model Parameters Using Particle Swarm Optimization and Genetic Algorithms
    Hasni, Abdelhafid
    Taibi, Rachid
    Draoui, Belkacem
    Boulard, Thierry
    [J]. IMPACT OF INTEGRATED CLEAN ENERGY ON THE FUTURE OF THE MEDITERRANEAN ENVIRONMENT, 2011, 6 : 371 - 380
  • [38] Using genetic algorithms for optimization
    Brown, DS
    [J]. ANALYTICAL CHEMISTRY, 1996, 68 (21) : A678 - A679
  • [39] An improved meshing method for shape optimization of aerodynamic profiles using genetic algorithms
    Lopez, D.
    Angulo, C.
    Macareno, L.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2008, 56 (08) : 1383 - 1389
  • [40] Thermal analysis and shape optimization of an in-space radiator using genetic algorithms
    Hull, PV
    Tinker, M
    SanSoucie, M
    Kittredge, K
    [J]. SPACE TECHNOLOGY AND APPLICATIONS INTERNATIONAL FORUM - STAIF 2006, 2006, 813 : 81 - +