Optimizing X-ray mirror thermal performance using variable length cooling for second generation FELs

被引:7
|
作者
Hardin, Corey L. [1 ]
Srinivasan, Venkat N. [1 ]
Amores, Lope [1 ]
Kelez, Nicholas M. [1 ]
Morton, Daniel S. [1 ]
Stefan, Peter M. [1 ]
Nicolas, Josep [1 ]
Zhang, Lin [1 ]
Cocco, Daniele [1 ]
机构
[1] SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA
来源
ADAPTIVE X-RAY OPTICS IV | 2016年 / 9965卷
关键词
FEL; LCLS;
D O I
10.1117/12.2235825
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The success of the LCLS led to an interest across a number of disciplines in the scientific community including physics, chemistry, biology, and material science. Fueled by this success, SLAC National Accelerator Laboratory is developing a new high repetition rate free electron laser, LCLS-II, a superconducting linear accelerator capable of a repetition rate up to 1 MHz. Undulators will be optimized for 200 to 1300 eV soft X-rays, and for 1000 to 5000 eV hard X-rays. To absorb spontaneous radiation, higher harmonic energies and deflect the x-ray beam to various end stations, the transport and diagnostics system includes grazing incidence plane mirrors on both the soft and Hard X-ray beamline. To deliver the FEL beam with minimal power loss and wavefront distortion, we need mirrors of height errors below 1nm rms in operational conditions. We need to mitigate the thermal load effects due to the high repetition rate. The absorbed thermal profile is highly dependent on the beam divergence, and this is a function of the photon energy. To address this complexity, we developed a mirror cradle with variable length cooling and first order curve correction. Mirror figure error is minimized using variable length water-cooling through a gallium-indium eutectic bath. Curve correction is achieved with an off-axis bender that will be described in details. We present the design features, mechanical analysis and results from optical and mechanical tests of a prototype assembly, with particular regards to the figure sensitivity to bender corrections.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] In-pixel conversion with a 10 bit SAR ADC for next generation X-ray FELs
    Lodola, L.
    Batignani, G.
    Benkechkache, M. A.
    Bettarini, S.
    Casarosa, G.
    Comotti, D.
    Dalla Betta, G. F.
    Fabris, L.
    Forti, F.
    Grassi, M.
    Latreche, S.
    Malcovati, P.
    Manghisoni, M.
    Mendicino, R.
    Morsani, F.
    Paladino, A.
    Pancheri, L.
    Paoloni, E.
    Ratti, L.
    Re, V.
    Rizzo, G.
    Traversi, G.
    Vacchi, C.
    Verzellesi, G.
    Xu, H.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2016, 824 : 313 - 315
  • [22] The PixFEL front-end for X-ray imaging in the radiation environment of next generation FELs
    Ratti, L.
    Comotti, D.
    Fabris, L.
    Grassi, M.
    Lodola, L.
    Malcovati, P.
    Manghisoni, M.
    Re, V.
    Traversi, G.
    Vacchi, C.
    Batignani, G.
    Bettarini, S.
    Casarosa, G.
    Forti, F.
    Morsani, F.
    Paladino, A.
    Paoloni, E.
    Rizzo, G.
    Benkechkache, M. A.
    Betta, G. -F. Dalla
    Mendicino, R.
    Pancheri, L.
    Verzellesi, G.
    Xu, H.
    2017 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2017,
  • [23] Generation of Ultrashort Pulses in XUV and X-ray FELs via an Excessive Reverse Undulator Taper
    Schneidmiller, Evgeny
    Dreimann, Matthias
    Kuhlmann, Marion
    Roensch-Schulenburg, Juliane
    Zacharias, Helmut
    PHOTONICS, 2023, 10 (06)
  • [24] Impact of annealing on performance of X-ray mirror coatings for Athena
    Henriksen, P. L.
    Ferreira, D. D. M.
    Massahi, S.
    Svendsen, S.
    Gellert, N.
    Christensen, F. E.
    Jegers, A. S.
    Landgraf, B.
    Thete, A.
    Collon, M.
    Handick, E.
    Cibik, L.
    Krumrey, M.
    Gollwitzer, C.
    Ferreira, I
    Shortt, B.
    Bavdaz, M.
    OPTICS FOR EUV, X-RAY, AND GAMMA-RAY ASTRONOMY X, 2021, 11822
  • [25] X-ray performance of a qualification model of an XMM mirror module
    Gondoin, P
    Aschenbach, B
    Brauninger, H
    deChambure, D
    Collette, JP
    Egger, R
    vanKatwijk, K
    Lumb, D
    Peacock, A
    Stockmann, Y
    Tock, JP
    Willingale, R
    EUV, X-RAY, AND GAMMA-RAY INSTRUMENTATION FOR ASTRONOMY VII, 1996, 2808 : 390 - 401
  • [26] Optimization Strategy for X-Ray Generation and Countermeasure Fusion of Bronze Mirror
    Wu Meng
    Wang Jiao
    Xiang Jiankai
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (02)
  • [27] Extreme Ultraviolet Second Harmonic Generation using a seeded soft X-ray laser
    Helk, T.
    Berger, E.
    Hoffmann, L.
    Kabacinski, A.
    Gautier, J.
    Tissandier, F.
    Goddet, J. P.
    Sebban, S.
    Spielmann, C.
    Zuerch, M.
    2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2021,
  • [28] Soft X-Ray Second Harmonic Generation as an Interfacial Probe
    Lam, R. K.
    Raj, S. L.
    Pascal, T. A.
    Pemmaraju, C. D.
    Foglia, L.
    Simoncig, A.
    Fabris, N.
    Miotti, P.
    Hull, C. J.
    Rizzuto, A. M.
    Smith, J. W.
    Mincigrucci, R.
    Masciovecchio, C.
    Gessini, A.
    Allaria, E.
    De Ninno, G.
    Diviacco, B.
    Roussel, E.
    Spampinati, S.
    Penco, G.
    Di Mitri, S.
    Trovo, M.
    Danailov, M.
    Christensen, S. T.
    Sokaras, D.
    Weng, T-C.
    Coreno, M.
    Poletto, L.
    Drisdell, W. S.
    Prendergast, D.
    Giannessi, L.
    Principi, E.
    Nordlund, D.
    Saykally, R. J.
    Schwartz, C. P.
    PHYSICAL REVIEW LETTERS, 2018, 120 (02)
  • [29] Thermal forming of glass microsheets for x-ray telescope mirror segments
    Jimenez-Garate, Marie A.
    Hailey, Charles J.
    Craig, William W.
    Christensen, Finn E.
    Applied Optics, 2003, 42 (04): : 724 - 735
  • [30] Thermal forming of glass microsheets for x-ray telescope mirror segments
    Jimenez-Garate, MA
    Hailey, CJ
    Craig, WW
    Christensen, FE
    APPLIED OPTICS, 2003, 42 (04) : 724 - 735