Mining Hot Topics from Twitter Streams

被引:25
|
作者
Guo, Jing [1 ,2 ]
Zhang, Peng [2 ]
Tan, Jianlong [2 ]
Guo, Li [2 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Comp Sci, Beijing, Peoples R China
[2] Chinese Acad Sci, Inst Informat Engn, Beijing, Peoples R China
基金
美国国家科学基金会;
关键词
Data stream mining; Hot topic mining; Frequent pattern mining; Twitter streams;
D O I
10.1016/j.procs.2012.04.224
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Mining hot topics from twitter streams has attracted a lot of attention in recent years. Traditional hot topic mining from Internet Web pages were mainly based on text clustering. However, compared to the texts in Web pages, twitter texts are relatively short with sparse attributes. Moreover, twitter data often increase rapidly with fast spreading speed, which poses great challenge to existing topic mining models. To this end, we propose, in this paper, a flexible stream mining approach for hot twitter topic detection. Specifically, we propose to use the Frequent Pattern stream mining algorithm (i.e. FP-stream) to detect hot topics from twitter streams. Empirical studies on real world twitter data demonstrate the utility of the proposed method.
引用
下载
收藏
页码:2008 / 2011
页数:4
相关论文
共 50 条
  • [21] Mining Phase Evolution for Hot Topics: A Case Study from Multiple Social Media Platforms
    Liu, Ruoran
    Li, Qiudan
    Wang, Can
    Wang, Lei
    Zeng, Daniel Dajun
    Ma, Hongyuan
    2017 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2017, : 2814 - 2819
  • [22] Political Opinion Mining from Twitter
    Sharma, Yashvardhan
    Mittal, Ekansh
    Garg, Mayank
    INTERNATIONAL JOURNAL OF INFORMATION SYSTEMS IN THE SERVICE SECTOR, 2016, 8 (04) : 47 - 56
  • [23] Mining Popular Topics from the Media
    Boch, Kyle R.
    Kristjanson, Freyja C.
    Leung, Carson K.
    Liu, Yu
    Unrau, Andrea M.
    Zhang, Shuai April
    Cuzzocrea, Alfredo
    2022 IEEE 46TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE (COMPSAC 2022), 2022, : 1262 - 1267
  • [24] Hot topics from AAN 2016
    Ian Fyfe
    Nature Reviews Neurology, 2016, 12 (6) : 312 - 312
  • [25] Sensing Trending Topics in Twitter
    Maria Aiello, Luca
    Petkos, Georgios
    Martin, Carlos
    Corney, David
    Papadopoulos, Symeon
    Skraba, Ryan
    Goeker, Ayse
    Kompatsiaris, Ioannis
    Jaimes, Alejandro
    IEEE TRANSACTIONS ON MULTIMEDIA, 2013, 15 (06) : 1268 - 1282
  • [26] Estimating the Locations of Emergency Events from Twitter Streams
    Ao, Ji
    Zhang, Peng
    Cao, Yanan
    2ND INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT, ITQM 2014, 2014, 31 : 731 - 739
  • [27] The geography of Twitter topics in London
    Lansley, Guy
    Longley, Paul A.
    COMPUTERS ENVIRONMENT AND URBAN SYSTEMS, 2016, 58 : 85 - 96
  • [28] Quantifying moral foundations from various topics on Twitter conversations
    Kaur, Rishemjit
    Sasahara, Kazutoshi
    2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2016, : 2505 - 2512
  • [29] Discovering Hot Topics using Twitter Streaming Data Social Topic Detection and Geographic Clustering
    Kim, Hwi-Gang
    Lee, Seongjoo
    Kyeong, Sunghyon
    2013 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM), 2013, : 1215 - 1220
  • [30] Detecting Topics and Polarity From Twitter: A University Faculty Case
    Ruiz, Almudena Sanchez
    Galan, Daniel
    Garcia-Beltran, Angel
    Rodriguez-Vidal, Javier
    IEEE ACCESS, 2024, 12 : 148 - 156