Mining Hot Topics from Twitter Streams

被引:25
|
作者
Guo, Jing [1 ,2 ]
Zhang, Peng [2 ]
Tan, Jianlong [2 ]
Guo, Li [2 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Comp Sci, Beijing, Peoples R China
[2] Chinese Acad Sci, Inst Informat Engn, Beijing, Peoples R China
基金
美国国家科学基金会;
关键词
Data stream mining; Hot topic mining; Frequent pattern mining; Twitter streams;
D O I
10.1016/j.procs.2012.04.224
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Mining hot topics from twitter streams has attracted a lot of attention in recent years. Traditional hot topic mining from Internet Web pages were mainly based on text clustering. However, compared to the texts in Web pages, twitter texts are relatively short with sparse attributes. Moreover, twitter data often increase rapidly with fast spreading speed, which poses great challenge to existing topic mining models. To this end, we propose, in this paper, a flexible stream mining approach for hot twitter topic detection. Specifically, we propose to use the Frequent Pattern stream mining algorithm (i.e. FP-stream) to detect hot topics from twitter streams. Empirical studies on real world twitter data demonstrate the utility of the proposed method.
引用
收藏
页码:2008 / 2011
页数:4
相关论文
共 50 条
  • [1] Mining bursty topics from twitter text streams based on Labeled-LDA
    Dai, Guangying
    Xu, Ming
    Xu, Jian
    Ren, Yizhi
    Zhang, Haiping
    Zheng, Ning
    [J]. Journal of Computational Information Systems, 2014, 10 (11): : 4905 - 4912
  • [2] Detecting hot topics from Twitter: A multiview approach
    Fang, Yixiang
    Zhang, Haijun
    Ye, Yunming
    Li, Xutao
    [J]. JOURNAL OF INFORMATION SCIENCE, 2014, 40 (05) : 578 - 593
  • [3] Mining Interesting Topics in Twitter Communities
    Vathi, Eleni
    Siolas, Georgios
    Stafylopatis, Andreas
    [J]. COMPUTATIONAL COLLECTIVE INTELLIGENCE (ICCCI 2015), PT I, 2015, 9329 : 123 - 132
  • [4] A Review of Opinion Mining in Twitter Streams
    Khan, Narmeen
    Khan, M. N. A.
    [J]. INTERNATIONAL JOURNAL OF NEXT-GENERATION COMPUTING, 2018, 9 (01): : 66 - 72
  • [5] Mining and categorizing interesting topics in Twitter communities
    Vathi, Eleni
    Siolas, Georgios
    Stafylopatis, Andreas
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2017, 32 (02) : 1265 - 1275
  • [6] How people talk about health? Detecting Health Topics from Twitter Streams
    Comito, Carmela
    Pizzuti, Clara
    Procopio, Nicola
    [J]. INTERNATIONAL CONFERENCE ON BIG DATA AND INTERNET OF THINGS (BDIOT 2017), 2017, : 85 - 90
  • [7] Applying Hidden Topics in Ranking Social Update Streams on Twitter
    Thi-Tuoi Nguyen
    Tri-Thanh Nguyen
    Quang-Thuy Ha
    [J]. PROCEEDINGS OF 2013 IEEE RIVF INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION TECHNOLOGIES: RESEARCH, INNOVATION, AND VISION FOR THE FUTURE (RIVF), 2013, : 180 - 185
  • [8] Detecting global and local topics via mining twitter data
    Liu, Huan
    Ge, Yong
    Zheng, Qinghua
    Lin, Rongcheng
    Li, Huayu
    [J]. NEUROCOMPUTING, 2018, 273 : 120 - 132
  • [9] Trending Topics on Twitter Improve the Prediction of Google Hot Queries
    Giummole, Federica
    Orlando, Salvatore
    Tolomei, Gabriele
    [J]. 2013 ASE/IEEE INTERNATIONAL CONFERENCE ON SOCIAL COMPUTING (SOCIALCOM), 2013, : 39 - 44
  • [10] Using Data Mining Techniques to Examine Domestic Violence Topics on Twitter
    Xue, Jia
    Chen, Junxiang
    Gelles, Richard
    [J]. VIOLENCE AND GENDER, 2019, 6 (02) : 105 - 114