A Riesz-projection-based method for nonlinear eigenvalue problems

被引:8
|
作者
Binkowski, Felix [1 ]
Zschiedrich, Lin [2 ]
Burger, Sven [1 ,2 ]
机构
[1] Zuse Inst Berlin, Takustr 7, D-14195 Berlin, Germany
[2] JCMwave GmbH, Bolivarallee 22, D-14050 Berlin, Germany
关键词
Nonlinear eigenvalue problems; Contour integration; Riesz projection; Quasinormal modes; Nanophotonics;
D O I
10.1016/j.jcp.2020.109678
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose an algorithm for general nonlinear eigenvalue problems to compute physically relevant eigenvalues within a chosen contour. Eigenvalue information is explored by contour integration incorporating different weight functions. The gathered information is processed by solving a nonlinear system of equations of small dimension prioritizing eigenvalues with high physical impact. No auxiliary functions have to be introduced since linearization is not used. The numerical implementation is straightforward as the evaluation of the integrand can be regarded as a blackbox. We apply the method to a quantum mechanical problem and to two nanophotonic systems. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] A rational-Chebyshev projection method for nonlinear eigenvalue problems
    Tang, Ziyuan
    Saad, Yousef
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2024,
  • [2] Riesz-projection-based theory of light-matter interaction in dispersive nanoresonators
    Zschiedrich, Lin
    Binkowski, Felix
    Nikolay, Niko
    Benson, Oliver
    Kewes, Guenter
    Burger, Sven
    [J]. PHYSICAL REVIEW A, 2018, 98 (04)
  • [3] An Elementary Derivation of the Projection Method for Nonlinear Eigenvalue Problems Based on Complex Contour Integration
    Yamamoto, Yusaku
    [J]. EIGENVALUE PROBLEMS: ALGORITHMS, SOFTWARE AND APPLICATIONS IN PETASCALE COMPUTING (EPASA 2015), 2017, 117 : 251 - 265
  • [4] A projection based multiscale optimization method for eigenvalue problems
    Graf, Peter A.
    Jones, Wesley B.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2007, 39 (02) : 235 - 245
  • [5] A projection based multiscale optimization method for eigenvalue problems
    Peter A. Graf
    Wesley B. Jones
    [J]. Journal of Global Optimization, 2007, 39 : 235 - 245
  • [6] A Jacobi-Davidson-type projection method for nonlinear eigenvalue problems
    Betcke, T
    Voss, H
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2004, 20 (03): : 363 - 372
  • [7] THE PROJECTION KANTOROVICH METHOD FOR EIGENVALUE PROBLEMS
    LARDY, LJ
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1994, 50 (1-3) : 375 - 384
  • [8] CONVERGENCE OF PROJECTION METHOD IN EIGENVALUE PROBLEMS
    MEDVEDEV, VA
    [J]. DOKLADY AKADEMII NAUK SSSR, 1964, 156 (02): : 258 - &
  • [9] A BLOCK PRECONDITIONED HARMONIC PROJECTION METHOD FOR LARGE-SCALE NONLINEAR EIGENVALUE PROBLEMS
    Xue, Fei
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (03): : A1809 - A1835
  • [10] An Arnoldi method for nonlinear eigenvalue problems
    Voss, H
    [J]. BIT NUMERICAL MATHEMATICS, 2004, 44 (02) : 387 - 401