Exact results in N=2 gauge theories

被引:0
|
作者
Fucito, Francesco [1 ,2 ]
Morales, Jose Francisco [1 ,2 ]
Poghossian, Rubik [3 ]
Pacifici, Daniel Ricci [4 ,5 ]
机构
[1] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy
[2] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy
[3] Yerevan Phys Inst, Yerevan 0036, Armenia
[4] Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy
[5] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy
来源
关键词
Supersymmetric gauge theory; Wilson; 't Hooft and Polyakov loops; Nonperturbative Effects; WILSON LOOPS;
D O I
10.1007/JHEP10(2013)178
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We derive exact formulae for the partition function and the expectation values of Wilson/'t Hooft loops, thus directly checking their S-duality transformations. We focus on a special class of N = 2 gauge theories on S-4 with fundamental matter. In particular we show that, for a specific choice of the masses, the matrix model integral defining the gauge theory partition function localizes around a finite set of critical points where it can be explicitly evaluated and written in terms of generalized hypergeometric functions. From the AGT perspective the gauge theory partition function, evaluated with this choice of masses, is viewed as a four point correlator involving the insertion of a degenerated field. The well known simplicity of the degenerated correlator reflects the fact that for these choices of masses only a very restrictive type of instanton configurations contributes to the gauge theory partition function.
引用
收藏
页数:28
相关论文
共 50 条
  • [31] Massive N=2 gauge theories at large N
    Russo, J. G.
    Zarembo, K.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2013, (11):
  • [32] Gauge-stringy instantons in N=2 U(N) gauge theories
    Ghorbani, Hossein
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2013, (12):
  • [33] Hamiltonian SU(N) lattice gauge theories with exact vacuum states in 2+1 dimensions
    Frichter, G. M.
    Robson, D.
    [J]. Physical Review D Particles, Fields, Gravitation and Cosmology, 52 (01):
  • [34] Integrability in N=2 superconformal gauge theories
    Pomoni, Elli
    [J]. NUCLEAR PHYSICS B, 2015, 893 : 21 - 53
  • [35] Geometric construction of N = 2 gauge theories
    Mayr, P
    [J]. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 1999, 47 (1-3): : 39 - 63
  • [36] Geometry and N=2 exceptional gauge theories
    Hashiba, J
    Terashima, S
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 1999, (09):
  • [37] CATEGORICAL TINKERTOYS FOR N=2 GAUGE THEORIES
    Cecotti, Sergio
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2013, 28 (5-6):
  • [38] N = 2 gauge theories and quantum phases
    Russo, Jorge G.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2014, (12):
  • [39] Localization and holography in N=2 gauge theories
    Buchel, Alex
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2013, (08):
  • [40] Review of recent results on N=1 supersymmetric gauge theories
    Rabinovici, E
    [J]. LOW-DIMENSIONAL APPLICATIONS OF QUANTUM FIELD THEORY, 1997, 362 : 237 - 243