Hydrated Intercalation for High-Performance Aqueous Zinc Ion Batteries

被引:272
|
作者
Shin, Jaeho [1 ,2 ]
Choi, Dong Shin [3 ]
Lee, Hyeon Jeong [1 ,2 ]
Jung, Yousung [3 ,4 ]
Choi, Jang Wook [1 ,2 ]
机构
[1] Seoul Natl Univ, Sch Chem & Biol Engn, 1 Gwanak Ro, Seoul 08826, South Korea
[2] Seoul Natl Univ, Inst Chem Proc, 1 Gwanak Ro, Seoul 08826, South Korea
[3] Korea Adv Inst Sci & Technol, Grad Sch Energy Environm Water & Sustainabil EEWS, 291 Daehak Ro, Daejeon 34141, South Korea
[4] Korea Adv Inst Sci & Technol, Dept Chem & Biomol Engn, 291 Daehak Ro, Daejeon 34141, South Korea
关键词
aqueous batteries; density functional theory; hydrated intercalation; vanadium oxide; zinc; X-RAY-ABSORPTION; PRUSSIAN BLUE ANALOG; CATHODE MATERIAL; HIGH-ENERGY; CRYSTAL WATER; V6O13; DIFFRACTION; CHEMISTRY; DIOXIDE; MG2+;
D O I
10.1002/aenm.201900083
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Aqueous zinc ion batteries (AZIBs) are steadily gaining attention based on their attractive merits regarding cost and safety. However, there are many obstacles to overcome, especially in terms of finding suitable cathode materials and elucidating their reaction mechanisms. Here, a mixed-valence vanadium oxide, V6O13, that functions as a stable cathode material in mildly acidic aqueous electrolytes is reported. Paired with a zinc metal anode, this material exhibits performance metrics of 360 mAh g(-1) at 0.2 A g(-1), 92% capacity retention after 2000 cycles, and 145 mAh g(-1) at a current density of 24.0 A g(-1). A combination of experiments and density functional theory calculations suggests that hydrated intercalation, where water molecules are cointercalated with Zn ions upon discharge, accounts for the aforementioned electrochemical performance. This intercalation mechanism facilitates Zn ion diffusion throughout the host lattice and electrode-electrolyte interface via electrostatic shielding and concurrent structural stabilization. Through a correlation of experimental data and theoretical calculations, the promise of utilizing hydrated intercalation as a means to achieve high-performance AZIBs is demonstrated.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Foldable chromium vanadate cathodes for high-performance aqueous zinc ion batteries
    Shi, Peiqi
    Huang, Meng
    Cui, Lianmeng
    Zhang, Bomian
    Zhang, Lei
    An, Qinyou
    Mai, Liqiang
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (18) : 10764 - 10772
  • [22] High-Performance Aqueous Zinc-Ion Batteries Realized by MOF Materials
    Xuechao Pu
    Baozheng Jiang
    Xianli Wang
    Wenbao Liu
    Liubing Dong
    Feiyu Kang
    Chengjun Xu
    Nano-Micro Letters, 2020, 12
  • [23] High-Performance Aqueous Zinc-Ion Batteries Realized by MOF Materials
    Pu, Xuechao
    Jiang, Baozheng
    Wang, Xianli
    Liu, Wenbao
    Dong, Liubing
    Kang, Feiyu
    Xu, Chengjun
    NANO-MICRO LETTERS, 2020, 12 (01)
  • [24] Hydrogen Bond Shielding Effect for High-Performance Aqueous Zinc Ion Batteries
    Sun, Tianjiang
    Zheng, Shibing
    Nian, Qingshun
    Tao, Zhanliang
    SMALL, 2022, 18 (12)
  • [25] Design and Conformation of Separators for High-performance Aqueous Zinc-Ion Batteries
    Niu, Ben
    Luo, Die
    He, Xianru
    Wang, Xin
    Chemistry - A European Journal, 2024, 30 (65)
  • [26] Intercalation design of layered vanadium phosphate based cathode material towards high-performance aqueous zinc-ion batteries
    Li, Yan
    Li, Wenxin
    Chen, Hongming
    Liu, Zijin
    Li, Xue
    Zhou, Dan
    Journal of Electroanalytical Chemistry, 2024, 974
  • [27] Enhanced Reversible Zinc Ion Intercalation in Deficient Ammonium Vanadate for High-Performance Aqueous Zinc-Ion Battery
    Zong, Quan
    Du, Wei
    Liu, Chaofeng
    Yang, Hui
    Zhang, Qilong
    Zhou, Zheng
    Atif, Muhammad
    Alsalhi, Mohamad
    Cao, Guozhong
    NANO-MICRO LETTERS, 2021, 13 (01)
  • [28] Systematic Modification of MoO3-Based Cathode by the Intercalation Engineering for High-Performance Aqueous Zinc-Ion Batteries
    Fang, Zhitang
    Liu, Cong
    Li, Xiaoge
    Peng, Luming
    Ding, Weiping
    Guo, Xuefeng
    Hou, Wenhua
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (07)
  • [29] Enhanced Reversible Zinc Ion Intercalation in Deficient Ammonium Vanadate for High-Performance Aqueous Zinc-Ion Battery
    Quan Zong
    Wei Du
    Chaofeng Liu
    Hui Yang
    Qilong Zhang
    Zheng Zhou
    Muhammad Atif
    Mohamad Alsalhi
    Guozhong Cao
    Nano-Micro Letters, 2021, 13 (08) : 19 - 33
  • [30] Enhanced Reversible Zinc Ion Intercalation in Deficient Ammonium Vanadate for High-Performance Aqueous Zinc-Ion Battery
    Quan Zong
    Wei Du
    Chaofeng Liu
    Hui Yang
    Qilong Zhang
    Zheng Zhou
    Muhammad Atif
    Mohamad Alsalhi
    Guozhong Cao
    Nano-Micro Letters, 2021, 13