Hydrated Intercalation for High-Performance Aqueous Zinc Ion Batteries

被引:272
|
作者
Shin, Jaeho [1 ,2 ]
Choi, Dong Shin [3 ]
Lee, Hyeon Jeong [1 ,2 ]
Jung, Yousung [3 ,4 ]
Choi, Jang Wook [1 ,2 ]
机构
[1] Seoul Natl Univ, Sch Chem & Biol Engn, 1 Gwanak Ro, Seoul 08826, South Korea
[2] Seoul Natl Univ, Inst Chem Proc, 1 Gwanak Ro, Seoul 08826, South Korea
[3] Korea Adv Inst Sci & Technol, Grad Sch Energy Environm Water & Sustainabil EEWS, 291 Daehak Ro, Daejeon 34141, South Korea
[4] Korea Adv Inst Sci & Technol, Dept Chem & Biomol Engn, 291 Daehak Ro, Daejeon 34141, South Korea
关键词
aqueous batteries; density functional theory; hydrated intercalation; vanadium oxide; zinc; X-RAY-ABSORPTION; PRUSSIAN BLUE ANALOG; CATHODE MATERIAL; HIGH-ENERGY; CRYSTAL WATER; V6O13; DIFFRACTION; CHEMISTRY; DIOXIDE; MG2+;
D O I
10.1002/aenm.201900083
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Aqueous zinc ion batteries (AZIBs) are steadily gaining attention based on their attractive merits regarding cost and safety. However, there are many obstacles to overcome, especially in terms of finding suitable cathode materials and elucidating their reaction mechanisms. Here, a mixed-valence vanadium oxide, V6O13, that functions as a stable cathode material in mildly acidic aqueous electrolytes is reported. Paired with a zinc metal anode, this material exhibits performance metrics of 360 mAh g(-1) at 0.2 A g(-1), 92% capacity retention after 2000 cycles, and 145 mAh g(-1) at a current density of 24.0 A g(-1). A combination of experiments and density functional theory calculations suggests that hydrated intercalation, where water molecules are cointercalated with Zn ions upon discharge, accounts for the aforementioned electrochemical performance. This intercalation mechanism facilitates Zn ion diffusion throughout the host lattice and electrode-electrolyte interface via electrostatic shielding and concurrent structural stabilization. Through a correlation of experimental data and theoretical calculations, the promise of utilizing hydrated intercalation as a means to achieve high-performance AZIBs is demonstrated.
引用
下载
收藏
页数:11
相关论文
共 50 条
  • [1] Zinc ion modulation of hydrated vanadium pentoxide for high-performance aqueous zinc ion batteries
    Wu, Jiadong
    Yang, Linyu
    Wang, Shuying
    Yao, Xiaolong
    Wang, Jun
    Abliz, Ablat
    Xie, Xuefang
    Mi, Hongyu
    Li, Haibing
    Journal of Power Sources, 2024, 595
  • [2] Zinc ion modulation of hydrated vanadium pentoxide for high-performance aqueous zinc ion batteries
    Wu, Jiadong
    Yang, Linyu
    Wang, Shuying
    Yao, Xiaolong
    Wang, Jun
    Abliz, Ablat
    Xie, Xuefang
    Mi, Hongyu
    Li, Haibing
    JOURNAL OF POWER SOURCES, 2024, 595
  • [3] Expanded hydrated vanadate for high-performance aqueous zinc-ion batteries
    Liu, Chaofeng
    Neale, Zachary
    Zheng, Jiqi
    Jia, Xiaoxiao
    Huang, Juanjuan
    Yan, Mengyu
    Tian, Meng
    Wang, Mingshan
    Yang, Jihui
    Cao, Guozhong
    ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (07) : 2273 - 2285
  • [4] Catalyzing zinc-ion intercalation in hydrated vanadates for aqueous zinc-ion batteries
    Liu, Chaofeng
    Tian, Meng
    Wang, Mingshan
    Zheng, Jiqi
    Wang, Shuhua
    Yan, Mengyu
    Wang, Zhaojie
    Yin, Zhengmao
    Yang, Jihui
    Cao, Guozhong
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (16) : 7713 - 7723
  • [5] Electroactivation-induced hydrated zinc vanadate as cathode for high-performance aqueous zinc-ion batteries
    Luo, Ping
    Zhang, Wenwei
    Wang, Shiyu
    Liu, Gangyuan
    Xiao, Yao
    Zuo, Chunli
    Tang, Wen
    Fu, Xudong
    Dong, Shijie
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 884
  • [6] Carbon-coated hydrated vanadium dioxide for high-performance aqueous zinc-ion batteries
    Luo, Zexiang
    Zeng, Jing
    Liu, Zhen
    He, Hanbing
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 906
  • [7] Layered Birnessite Cathode with a Displacement/Intercalation Mechanism for High-Performance Aqueous Zinc-Ion Batteries
    Xian-Zhi Zhai
    Jin Qu
    Shu-Meng Hao
    Ya-Qiong Jing
    Wei Chang
    Juan Wang
    Wei Li
    Yasmine Abdelkrim
    Hongfu Yuan
    Zhong-Zhen Yu
    Nano-Micro Letters, 2020, 12 (04) : 141 - 155
  • [8] Layered Birnessite Cathode with a Displacement/Intercalation Mechanism for High-Performance Aqueous Zinc-Ion Batteries
    Zhai, Xian-Zhi
    Qu, Jin
    Hao, Shu-Meng
    Jing, Ya-Qiong
    Chang, Wei
    Wang, Juan
    Li, Wei
    Abdelkrim, Yasmine
    Yuan, Hongfu
    Yu, Zhong-Zhen
    NANO-MICRO LETTERS, 2020, 12 (01)
  • [9] Layered Birnessite Cathode with a Displacement/Intercalation Mechanism for High-Performance Aqueous Zinc-Ion Batteries
    Xian-Zhi Zhai
    Jin Qu
    Shu-Meng Hao
    Ya-Qiong Jing
    Wei Chang
    Juan Wang
    Wei Li
    Yasmine Abdelkrim
    Hongfu Yuan
    Zhong-Zhen Yu
    Nano-Micro Letters, 2020, 12
  • [10] Rare earth metals ion intercalated hydrated vanadium oxides for high-performance aqueous zinc-ion batteries
    Hu, Bingbing
    Yang, Xinyao
    Li, Dongshan
    Jiang, Jiayu
    Liu, Chenglin
    Deng, Yu
    Pu, Hong
    Ma, Guangqiang
    Li, Zhi
    CERAMICS INTERNATIONAL, 2024, 50 (05) : 8421 - 8428