Symmetry of large solutions of semilinear elliptic equations.

被引:0
|
作者
Porretta, A
Véron, L
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[2] Fac Sci, CNRS UMR 6083, Lab Math & Phys Theor, F-37200 Tours, France
关键词
D O I
10.1016/j.crma.2006.01.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let g be a locally Lipschitz continuous function defined on R. We assume that g satisfies the Keller-Osserman condition and there exists a positive real number a such that g is convex on [a, infinity). Then any solution it of -Delta u + g(u) = 0 in a ball B of R-N, N >=, 2, which tends to infinity on aB, is spherically symmetric.
引用
收藏
页码:483 / 487
页数:5
相关论文
共 50 条