Symmetry of large solutions of semilinear elliptic equations.

被引:0
|
作者
Porretta, A
Véron, L
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[2] Fac Sci, CNRS UMR 6083, Lab Math & Phys Theor, F-37200 Tours, France
关键词
D O I
10.1016/j.crma.2006.01.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let g be a locally Lipschitz continuous function defined on R. We assume that g satisfies the Keller-Osserman condition and there exists a positive real number a such that g is convex on [a, infinity). Then any solution it of -Delta u + g(u) = 0 in a ball B of R-N, N >=, 2, which tends to infinity on aB, is spherically symmetric.
引用
收藏
页码:483 / 487
页数:5
相关论文
共 50 条
  • [1] Symmetry of large solutions for semilinear elliptic equations in a ball
    Cortazar, Carmen
    Elgueta, Manuel
    Garcia-Melian, J.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 121 : 286 - 297
  • [2] Radial symmetry of large solutions of semilinear elliptic equations with convection
    Kamalinejad, Ehsan
    Moradifam, Amir
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2014, 144 (01) : 139 - 147
  • [3] Symmetry of the solutions of semilinear elliptic equations
    Dolbeault, J
    Felmer, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (08): : 677 - 682
  • [4] Symmetry of large solutions for semilinear elliptic equations in a symmetric convex domain
    Li, Keqiang
    Wang, Shangjiu
    Li, Shaoyong
    AIMS MATHEMATICS, 2022, 7 (06): : 10860 - 10866
  • [5] Symmetry properties of solutions of semilinear elliptic equations in the plane
    Alessio Porretta
    Laurent Véron
    manuscripta mathematica, 2004, 115 : 239 - 258
  • [6] Symmetry properties of solutions of semilinear elliptic equations in the plane
    Porretta, A
    Véron, L
    MANUSCRIPTA MATHEMATICA, 2004, 115 (02) : 239 - 258
  • [7] Asymptotic symmetry of singular solutions of semilinear elliptic equations
    Lin, Chang-Shou
    Prajapat, Jyotshana V.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (09) : 2534 - 2550
  • [8] Radial solutions of semilinear elliptic equations with broken symmetry
    Candela, AM
    Palmieri, G
    Salvatore, A
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2006, 27 (01) : 117 - 132
  • [9] Entire large solutions for semilinear elliptic equations
    Dupaigne, Louis
    Ghergu, Marius
    Goubet, Olivier
    Warnault, Guillaume
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (07) : 2224 - 2251
  • [10] The symmetry of least-energy solutions for semilinear elliptic equations
    Chern, JL
    Lin, CS
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 187 (02) : 240 - 268