Mathematical predominance of Dirichlet condition for the one-dimensional Coulomb potential

被引:8
|
作者
de Oliveira, Cesar R. [1 ]
Verri, Alessandra A. [1 ]
机构
[1] Univ Fed Sao Carlos, Dept Matemat, BR-13560970 Sao Carlos, SP, Brazil
关键词
KLEIN-GORDON EQUATION; HYDROGEN-ATOM; SINGULAR PERTURBATIONS; REMOVING CUTOFFS; WAVE-GUIDES; IONIZATION; MECHANICS;
D O I
10.1063/1.4719976
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We restrict a quantum particle under a Coulombian potential (i.e., the Schrodinger operator with inverse of the distance potential) to three-dimensional tubes along the x axis and diameter epsilon, and study the confining limit epsilon -> 0. In the repulsive case we prove a strong resolvent convergence to a one-dimensional limit operator, which presents Dirichlet boundary condition at the origin. Due to the possibility of the falling of the particle in the center of force, in the attractive case we need to regularize the potential and also prove a norm resolvent convergence to the Dirichlet operator at the origin. Thus, it is argued that, among the infinitely many self-adjoint realizations of the corresponding problem in one dimension, the Dirichlet boundary condition at the origin is the reasonable one-dimensional limit. (C) 2012 American Institute of Physics.[http://dx.doi.org/10.1063/1.4719976]
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Estimates of Dirichlet Eigenvalues for One-Dimensional Fractal Drums
    Chen, Hua
    Li, Jinning
    [J]. ANALYSIS IN THEORY AND APPLICATIONS, 2020, 36 (03) : 243 - 261
  • [42] Estimates of Dirichlet Eigenvalues for One-Dimensional Fractal Drums
    Hua Chen
    Jinning Li
    [J]. Analysis in Theory and Applications, 2020, 36 (03) : 243 - 261
  • [43] Dirichlet forms for singular one-dimensional operators and on graphs
    Kant, Ulrike
    Klauss, Tobias
    Voigt, Juergen
    Weber, Matthias
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2009, 9 (04) : 637 - 659
  • [44] Dirichlet forms for singular one-dimensional operators and on graphs
    Ulrike Kant
    Tobias Klauss
    Jürgen Voigt
    Matthias Weber
    [J]. Journal of Evolution Equations, 2009, 9
  • [45] RELIABILITY OF ONE-DIMENSIONAL DIRICHLET WAVE-FUNCTIONS
    NUNEZ, MA
    [J]. PHYSICAL REVIEW A, 1995, 51 (06): : 4381 - 4395
  • [46] Regular Dirichlet extensions of one-dimensional Brownian motion
    Li, Liping
    Ying, Jiangang
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2019, 55 (04): : 1815 - 1849
  • [47] THE DENSITY IN A ONE-DIMENSIONAL POTENTIAL
    FEFFERMAN, C
    SECO, L
    [J]. ADVANCES IN MATHEMATICS, 1994, 107 (02) : 187 - 364
  • [48] ONE-DIMENSIONAL DELTA-FUNCTION POTENTIAL AND THE RADIATION BOUNDARY-CONDITION
    TAITELBAUM, H
    [J]. PHYSICA A, 1992, 190 (3-4): : 295 - 302
  • [49] CHARGE CURRENT WAVES IN A ONE-DIMENSIONAL COULOMB GAS
    CALAIS, JL
    COGORDAN, JA
    [J]. INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1984, : 67 - 76
  • [50] RELATIVISTIC DESCRIPTION OF COULOMB DISSOCIATION - A ONE-DIMENSIONAL MODEL
    BERGHAMMER, H
    VRETENAR, D
    RING, P
    [J]. PHYSICS LETTERS B, 1992, 296 (3-4) : 290 - 295