Concurrence for infinite-dimensional quantum systems

被引:26
|
作者
Guo, Yu [1 ,3 ]
Hou, Jinchuan [2 ]
Wang, Yuncai [3 ]
机构
[1] Shanxi Datong Univ, Dept Math, Datong 037009, Peoples R China
[2] Taiyuan Univ Technol, Dept Math, Taiyuan 030024, Peoples R China
[3] Taiyuan Univ Technol, Inst Optoelect Engn, Dept Phys & Optoelect, Taiyuan 030024, Peoples R China
基金
中国博士后科学基金;
关键词
Concurrence; Entanglement measure; Infinite-dimensional quantum systems; PURE STATES; ENTANGLEMENT; PURIFICATION;
D O I
10.1007/s11128-013-0552-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Concurrence is an important entanglement measure for states in finite-dimensional quantum systems that was explored intensively in the last decade. In this paper, we extend the concept of concurrence to infinite-dimensional bipartite systems and show that it is continuous and does not increase under local operation and classical communication.
引用
收藏
页码:2641 / 2653
页数:13
相关论文
共 50 条
  • [21] THE CHSH-TYPE INEQUALITIES FOR INFINITE-DIMENSIONAL QUANTUM SYSTEMS
    Guo, Yu
    MODERN PHYSICS LETTERS B, 2013, 27 (21):
  • [22] An entanglement criterion for states in infinite-dimensional multipartite quantum systems
    Wang YinZhu
    Hou JinChuan
    Guo Yu
    CHINESE SCIENCE BULLETIN, 2012, 57 (14): : 1643 - 1647
  • [23] Quantum control of infinite-dimensional many-body systems
    Bliss, Roger S.
    Burgarth, Daniel
    PHYSICAL REVIEW A, 2014, 89 (03)
  • [24] The generalized partial transposition criterion for infinite-dimensional quantum systems
    Yan, Siqing
    Guo, Yu
    Hou, Jinchuan
    CHINESE SCIENCE BULLETIN, 2014, 59 (03): : 279 - 285
  • [25] Quantum Systems with Infinite-Dimensional Coordinate Space and the Fourier Transform
    Busovikov, V. M.
    Zavadsky, D., V
    Sakbaev, V. Zh
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2021, 313 (01) : 27 - 40
  • [26] Quantum Systems with Infinite-Dimensional Coordinate Space and the Fourier Transform
    V. M. Busovikov
    D. V. Zavadsky
    V. Zh. Sakbaev
    Proceedings of the Steklov Institute of Mathematics, 2021, 313 : 27 - 40
  • [27] PERSISTENCE IN INFINITE-DIMENSIONAL SYSTEMS
    HALE, JK
    WALTMAN, P
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (02) : 388 - 395
  • [28] APPROXIMATION OF INFINITE-DIMENSIONAL SYSTEMS
    GU, GX
    KHARGONEKAR, PP
    LEE, EB
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1989, 34 (06) : 610 - 618
  • [29] REPRESENTATIONS OF INFINITE-DIMENSIONAL SYSTEMS
    CURTAIN, RF
    LECTURE NOTES IN CONTROL AND INFORMATION SCIENCES, 1989, 135 : 101 - 128
  • [30] Zeros of infinite-dimensional systems
    Zwart, H.
    Hof, M.B.
    IMA Journal of Mathematical Control and Information, 1997, 14 (01): : 85 - 94