Classical limit for a 3D lattice spin model

被引:4
|
作者
Korepanov, IG
Maillard, JM
Sergeev, SM
机构
[1] INST POINCARE, CTR EMILE BOREL, F-75231 PARIS 05, FRANCE
[2] LPTHE, F-75252 PARIS 05, FRANCE
[3] BRANCH INST NUCL PHYS, PROTVINO 142284, RUSSIA
关键词
tetrahedron equations; Hirota-Miwa equations; Miwa equations; semi-classical limit; 2+1 integrability;
D O I
10.1016/S0375-9601(97)00394-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The quasiclassical limit of the integrable statistical 3D lattice model known as the Zamolodchikov-Bazhanov-Baxter model is considered, We obtain a classical equation of motion for the scalar field, defined on the cubic lattice in 2 + 1-dimensional space-time, and show that it can be seen as a generalization of the Miwa equations. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:211 / 216
页数:6
相关论文
共 50 条
  • [41] Favoured local structures in liquids and solids: a 3D lattice model
    Ronceray, Pierre
    Harrowell, Peter
    SOFT MATTER, 2015, 11 (17) : 3322 - 3331
  • [42] Viscosity critical behaviour at the gel point in a 3d lattice model
    Del Gado, E
    de Arcangelis, L
    Coniglio, A
    EUROPEAN PHYSICAL JOURNAL E, 2000, 2 (04): : 359 - 365
  • [43] Viscosity critical behaviour at the gel point in a 3d lattice model
    E. Del Gado
    L. de Arcangelis
    A. Coniglio
    The European Physical Journal E, 2000, 2 : 359 - 365
  • [44] A 3D distinct lattice spring model for elasticity and dynamic failure
    Zhao, Gao-Feng
    Fang, Jiannong
    Zhao, Jian
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2011, 35 (08) : 859 - 885
  • [45] 3D Lattice Fracture Model: Application to Cement Paste at Microscale
    Qian, Z.
    Ye, G.
    Schlangen, E.
    van Breugel, K.
    ADVANCES IN FRACTURE AND DAMAGE MECHANICS IX, 2011, 452-453 : 65 - 68
  • [46] A 3D lattice model to describe fracture process in fibrous concrete
    Kozicki, J.
    Tejchman, J.
    COMPUTATIONAL MODELLING OF CONCRETE STRUCTURES, 2010, : 347 - 354
  • [47] Stretchable 3D lattice conductors
    Li, Tingyao
    Jiang, Yanhui
    Yu, Kunhao
    Wang, Qiming
    SOFT MATTER, 2017, 13 (42) : 7731 - 7739
  • [48] Classical field theory limit of many-body quantum Gibbs states in 2D and 3D
    Lewin, Mathieu
    Nam, Phan Thanh
    Rougerie, Nicolas
    INVENTIONES MATHEMATICAE, 2021, 224 (02) : 315 - 444
  • [49] Classical field theory limit of many-body quantum Gibbs states in 2D and 3D
    Mathieu Lewin
    Phan Thành Nam
    Nicolas Rougerie
    Inventiones mathematicae, 2021, 224 : 315 - 444
  • [50] WAVE THEORY OF LATTICE-DIRECTED TRAJECTORIES .3. CLASSICAL LIMIT
    NIP, HCH
    KELLY, JC
    PHYSICAL REVIEW B-SOLID STATE, 1972, 5 (07): : 2425 - &