On the finite element solution of frictionless contact problems using an exact penalty approach

被引:4
|
作者
Sewerin, Fabian [1 ]
Papadopoulos, Panayiotis [2 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Solid Mech, Braunschweig, Germany
[2] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA
关键词
Contact; Finite element method; Exact penalty; Lagrange multipliers; DIRICHLET BOUNDARY-CONDITIONS; FORMULATION; ALGORITHM;
D O I
10.1016/j.cma.2020.113108
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this article, an exact penalty method is introduced for the enforcement of the impenetrability constraint in problems of frictionless two-body contact solved by the finite element method. A complete algorithmic implementation is presented, including an automated scheme for the selection of the penalty parameter. Numerical examples are employed to assess the accuracy and robustness of the exact penalty method in comparison to classical penalty and Lagrange multiplier alternatives. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] A finite volume penalty-based implicit procedure for the treatment of the frictionless contact boundaries
    Batistic, Ivan
    Cardiff, Philip
    Ivankovic, Alojz
    Tukovic, Zeljko
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2023, 124 (18) : 4171 - 4191
  • [22] A finite element approach to solve contact problems in geotechnical engineering
    Mao, JQ
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2005, 29 (05) : 525 - 550
  • [23] A mortar-finite element approach to lubricated contact problems
    Yang, Bin
    Laursen, Tod A.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (47-48) : 3656 - 3669
  • [24] A robust finite element redistribution approach for elastodynamic contact problems
    Dabaghi, Farshid
    Petrov, Adrien
    Pousin, Jerome
    Renard, Yves
    [J]. APPLIED NUMERICAL MATHEMATICS, 2016, 103 : 48 - 71
  • [25] SOME REMARKS ON APPROXIMATE SOLUTION OF FRICTIONLESS ELASTIC CONTACT PROBLEMS
    PACZELT, I
    [J]. ACTA TECHNICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1976, 83 (3-4): : 337 - 355
  • [26] Finite-element analysis of frictionless contact problem for a laminated medium
    Seyidmamedov, Z
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2002, 58 (02) : 111 - 123
  • [27] A contact algorithm for 3D discrete and finite element contact problems based on penalty function method
    Mengyan Zang
    Wei Gao
    Zhou Lei
    [J]. Computational Mechanics, 2011, 48 : 541 - 550
  • [28] A contact algorithm for 3D discrete and finite element contact problems based on penalty function method
    Zang, Mengyan
    Gao, Wei
    Lei, Zhou
    [J]. COMPUTATIONAL MECHANICS, 2011, 48 (05) : 541 - 550
  • [29] The solution of contact problems using boundary element method
    Kravchuk, A. S.
    Neittaanmaeki, P.
    [J]. PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2007, 71 (02): : 295 - 304
  • [30] THE SOLUTION OF FRICTIONAL CONTACT PROBLEMS USING A FINITE-ELEMENT MATHEMATICAL-PROGRAMMING METHOD
    ZHU, CM
    JIN, YJ
    [J]. COMPUTERS & STRUCTURES, 1994, 52 (01) : 149 - 155