Oxidation-Etching Preparation of MnO2 Tubular Nanostructures for High-Performance Supercapacitors

被引:145
|
作者
Zhu, Jixin [1 ,2 ,3 ]
Shi, Wenhui [1 ]
Xiao, Ni [1 ]
Rui, Xianhong [1 ]
Tan, Huiteng [1 ]
Lu, Xuehong [1 ]
Hng, Huey Hoon [1 ]
Ma, Jan [1 ]
Yan, Qingyu [1 ,2 ,3 ]
机构
[1] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore
[2] Nanyang Technol Univ, Energy Res Inst, Singapore 637459, Singapore
[3] Nanyang Technol Univ, TUM CREATE Res Ctr, Singapore 637459, Singapore
关键词
MnO2; carbon nanofibre; nanotubes; nanowires; nanobelts; supercapacitor; ELECTROCHEMICAL CAPACITORS; ENERGY-STORAGE; SHEETS; ARRAYS; ELECTRODES; DEVICES;
D O I
10.1021/am300388u
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
1D hierarchical tubular MnO2 nanostructures have been prepared through a facile hydrothermal method using carbon nanofibres (CNFs) as sacrificial template. The morphology of MnO2 nanostructures can be adjusted by changing the reaction time or annealing process. Polycrystalline MnO2 nanotubes are formed with a short reaction time (e.g., 10 min) while hierarchical tubular MnO2 nanostructures composed of assembled nanosheets are obtained at longer reaction times (>45 min). The polycrystalline MnO2 nanotubes can be further converted to porous nanobelts and sponge-like nanowires by annealing in air. Among all the types of MnO2 nanostructures prepared, tubular MnO2 nanostructures composed of assembled nanosheets show optimized charge storage performance when tested as supercapacitor electrodes, for example, delivering an power density of 13.33 kW.kg(-1) and a energy density of 21.1 Wh.kg(-1) with a long cycling life over 3000 cycles, which is mainly related to their features of large specific surface area and optimized charge transfer pathway.
引用
收藏
页码:2769 / 2774
页数:6
相关论文
共 50 条
  • [31] Polydopamine and MnO2 core-shell composites for high-performance supercapacitors
    Hou, Ding
    Tao, Haisheng
    Zhu, Xuezhen
    Li, Maoguo
    APPLIED SURFACE SCIENCE, 2017, 419 : 580 - 585
  • [32] Sulfuric acid etching for fabrication of porous MnO2 for high-performance supercapacitor
    Zhang, Gaini
    Ren, Lijun
    Hu, Dengwei
    Gu, Hongxi
    Zhang, Sheng
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2018, 518 : 84 - 91
  • [33] Preparation and Enhanced Electrochemical Performance of MnO2 Nanosheets for Supercapacitors
    Mondal, Anjon Kumar
    Wang, Bei
    Su, Dawei
    Wang, Ying
    Zhang, Xiaogang
    Wang, Guoxiu
    JOURNAL OF THE CHINESE CHEMICAL SOCIETY, 2012, 59 (10) : 1275 - 1279
  • [34] MnO2/SWCNT buckypaper for high performance supercapacitors
    Gupta, Vinay
    Kumar, S.
    JOURNAL OF ENERGY STORAGE, 2019, 26
  • [35] MnO2 Nanoflake-Shelled Carbon Nanotube Particles for High-Performance Supercapacitors
    Gueon, Donghee
    Moon, Jun Hyuk
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2017, 5 (03): : 2445 - 2453
  • [36] Ultrafine MnO2 Nanowire Arrays Grown on Carbon Fibers for High-Performance Supercapacitors
    Hu, Jiyu
    Qian, Feng
    Song, Guosheng
    Li, Wenyao
    Wang, Linlin
    NANOSCALE RESEARCH LETTERS, 2016, 11
  • [37] MnO2/reduced graphene oxide composite as high-performance electrode for flexible supercapacitors
    Ye, Kai-Hang
    Liu, Zhao-Qing
    Xu, Chang-Wei
    Li, Nan
    Chen, Yi-Bo
    Su, Yu-Zhi
    INORGANIC CHEMISTRY COMMUNICATIONS, 2013, 30 : 1 - 4
  • [38] In situ synthesis of ultrafine β-MnO2/polypyrrole nanorod composites for high-performance supercapacitors
    Zang, Jianfeng
    Li, Xiaodong
    JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (29) : 10965 - 10969
  • [39] Application of high-performance MnO2 nanocomposite electrodes in ionic liquid hybrid supercapacitors
    Zhao, Dandan
    Zhao, Yongqing
    Zhang, Xuan
    Xu, Cailing
    Peng, Yong
    Li, Hulin
    Yang, Zhi
    MATERIALS LETTERS, 2013, 107 : 115 - 118
  • [40] Facile Fabrication of MnO2/Graphene/Ni Foam Composites for High-Performance Supercapacitors
    Liu, Rui
    Jiang, Rui
    Chu, Yu-Han
    Yang, Wein-Duo
    NANOMATERIALS, 2021, 11 (10)