Effect of snowpack on the soil bacteria of alpine meadows in the Qinghai-Tibetan Plateau of China

被引:35
|
作者
Ade, L. J. [1 ]
Hu, L. [2 ]
Zi, H. B. [1 ]
Wang, C. T. [2 ]
Lerdau, M. [3 ]
Dong, S. K. [4 ]
机构
[1] Southwest Univ Nationalities, Inst Qinghai Tibetan Plateau Res, Chengdu 610041, Sichuan, Peoples R China
[2] Southwest Univ Nationalities, Sch Life & Technol, Chengdu 610041, Sichuan, Peoples R China
[3] Univ Virginia, Dept Environm Sci, Charlottesville, VA 22902 USA
[4] Beijing Normal Univ, Sch Environm, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Alpine meadow; Snowpack; Soil physicochemical property; Soil bacterial communities; High-throughput sequencing; MICROBIAL COMMUNITY STRUCTURE; ARCTIC TUNDRA SOILS; FUNCTIONAL DIVERSITY; VARIABILITY; PERMAFROST; COVER; RESPIRATION; NITROGEN; SENSITIVITY; GRASSLAND;
D O I
10.1016/j.catena.2018.01.004
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Global climate change is accompanied by changes in the amounts of ice and snow. These changes have both a direct effect on the plant community structure, primary productivity and carbon cycle and an indirect influence on the belowground ecosystem. However, the effects of changes in snowpack on the soil environment and belowground ecological processes, particularly in soil microbial communities are still poorly understood in alpine meadows. We conducted a field study of controlled snowpack in the eastern margin of the Tibetan Plateau, where five treatments were set up, named as S0, S1, S2, S3, and S4 (S1: the amount of a natural snowpack; S2, S3, and S4 were twofold, threefold, and fourfold of Sl, respectively; and SO: completely removed snow). Soil physicochemical properties, soil community structure and diversity measured by 16S rRNA gene amplicons were studied. The results indicated that 1) as snowpack increased, the average soil temperature decreased, but soil moisture and soil compaction increased; 2) soil chemical properties (pH, available nitrogen, available potassium, available phosphorus, total nitrogen, total potassium, total phosphorus and total soil organic carbon) all changed as snowpack changed; and 3) increasing snowpack led to a decrease in the relative abundance of Acidobacteria, but Bacteroidetes and Actinobacteria did not decline in response to increasing snowpack. In summary, these results showed that soil bacterial communities are sensitive to changes in snowpack in alpine meadows.
引用
收藏
页码:13 / 22
页数:10
相关论文
共 50 条
  • [32] Effect of snow-cover duration on plant species diversity of alpine meadows on the eastern Qinghai-Tibetan Plateau
    Chen Wennian
    Wu Yan
    Wu Ning
    Luo Peng
    JOURNAL OF MOUNTAIN SCIENCE, 2008, 5 (04) : 327 - 339
  • [33] Pedogenesis and physicochemical parameters influencing soil carbon and nitrogen of alpine meadows in permafrost regions in the northeastern Qinghai-Tibetan Plateau
    Mu, Cuicui
    Zhang, Tingjun
    Zhang, Xiankai
    Cao, Bin
    Peng, Xiaoqing
    Cao, Lin
    Su, Hang
    CATENA, 2016, 141 : 85 - 91
  • [34] Effect of snow-cover duration on plant species diversity of alpine meadows on the eastern Qinghai-Tibetan Plateau
    Wennian Chen
    Yan Wu
    Ning Wu
    Peng Luo
    Journal of Mountain Science, 2008, 5 : 327 - 339
  • [35] Behavioral patterns of yaks (Bos grunniens) grazing on alpine shrub meadows of the Qinghai-Tibetan Plateau
    Yang, Chuntao
    Tsedan, Guru
    Fan, Qingshan
    Wang, Shulin
    Wang, Zhaofeng
    Chang, Shenghua
    Hou, Fujiang
    APPLIED ANIMAL BEHAVIOUR SCIENCE, 2021, 234
  • [36] Artemisia smithii patches form fertile islands and lead to heterogeneity of soil bacteria and fungi within and around the patches in alpine meadows of the Qinghai-Tibetan Plateau
    Yang, Hang
    Yu, Xiaojun
    Song, Jianchao
    Wu, Jianshuang
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [37] Effects of gravel on soil and vegetation properties of alpine grassland on the Qinghai-Tibetan plateau
    Qin, Yu
    Yi, Shuhua
    Chen, Jianjun
    Ren, Shilong
    Ding, Yongjian
    ECOLOGICAL ENGINEERING, 2015, 74 : 351 - 355
  • [38] Soil Nutrient and Vegetation Diversity Patterns of Alpine Wetlands on the Qinghai-Tibetan Plateau
    Ma, Muyuan
    Zhu, Yaojun
    Wei, Yuanyun
    Zhao, Nana
    SUSTAINABILITY, 2021, 13 (11)
  • [39] Assessment of the vulnerability of alpine grasslands on the Qinghai-Tibetan Plateau
    Li, Meng
    Zhang, Xianzhou
    He, Yongtao
    Niu, Ben
    Wu, Jianshuang
    PEERJ, 2020, 8
  • [40] Stability of alpine meadow ecosystem on the Qinghai-Tibetan Plateau
    Zhou, HK
    Zhou, L
    Zhao, XQ
    Liu, W
    Li, YN
    Gu, S
    Zhou, XM
    CHINESE SCIENCE BULLETIN, 2006, 51 (03): : 320 - 327