Multiscale Analysis of River Networks using the R Package linbin

被引:7
|
作者
Welty, Ethan Z. [1 ]
Torgersen, Christian E. [1 ]
Brenkman, Samuel J. [2 ]
Duda, Jeffrey J. [3 ]
Armstrong, Jonathan B. [4 ]
机构
[1] Univ Washington, US Geol Survey, Cascadia Field Stn, Sch Environm & Forest Sci,Forest & Rangeland Ecos, Seattle, WA 98195 USA
[2] Natl Pk Serv, Olymp Natl Pk, Port Angeles, WA 98362 USA
[3] US Geol Survey, Western Fisheries Res Ctr, Seattle, WA 98115 USA
[4] Univ Wyoming, Wyoming Cooperat Fish & Wildlife Unit, Laramie, WY 82071 USA
关键词
HABITAT; SCALE; FISH; PATTERNS; MODELS;
D O I
10.1080/02755947.2015.1044764
中图分类号
S9 [水产、渔业];
学科分类号
0908 ;
摘要
Analytical tools are needed in riverine science and management to bridge the gap between GIS and statistical packages that were not designed for the directional and dendritic structure of streams. We introduce linbin, an R package developed for the analysis of riverscapes at multiple scales. With this software, riverine data on aquatic habitat and species distribution can be scaled and plotted automatically with respect to their position in the stream network or-in the case of temporal data-their position in time. The linbin package aggregates data into bins of different sizes as specified by the user. We provide case studies illustrating the use of the software for (1) exploring patterns at different scales by aggregating variables at a range of bin sizes, (2) comparing repeat observations by aggregating surveys into bins of common coverage, and (3) tailoring analysis to data with custom bin designs. Furthermore, we demonstrate the utility of linbin for summarizing patterns throughout an entire stream network, and we analyze the diel and seasonal movements of tagged fish past a stationary receiver to illustrate how linbin can be used with temporal data. In short, linbin enables more rapid analysis of complex data sets by fisheries managers and stream ecologists and can reveal underlying spatial and temporal patterns of fish distribution and habitat throughout a riverscape.
引用
收藏
页码:802 / 809
页数:8
相关论文
共 50 条
  • [21] meaRtools: An R package for the analysis of neuronal networks recorded on microelectrode arrays
    Gelfman, Sahar
    Wang, Quanli
    Lu, Yi-Fan
    Hall, Diana
    Bostick, Christopher D.
    Dhindsa, Ryan
    Halvorsen, Matt
    McSweeney, K. Melodi
    Cotterill, Ellese
    Edinburgh, Tom
    Beaumont, Michael A.
    Frankel, Wayne N.
    Petrovski, Slave
    Allen, Andrew S.
    Bolandi, Michael J.
    Goldstein, David B.
    Eglen, Stephen J.
    PLOS COMPUTATIONAL BIOLOGY, 2018, 14 (10)
  • [22] BoolNet-an R package for generation, reconstruction and analysis of Boolean networks
    Muessel, Christoph
    Hopfensitz, Martin
    Kestler, Hans A.
    BIOINFORMATICS, 2010, 26 (10) : 1378 - 1380
  • [23] Simple and Canonical Correspondence Analysis Using the R Package anacor
    de Leeuw, Jan
    Mair, Patrick
    JOURNAL OF STATISTICAL SOFTWARE, 2009, 31 (05): : 1 - 18
  • [24] TURF analysis for CATA data using R package ?turfR ?
    Kuesten, Carla
    Bi, Jian
    FOOD QUALITY AND PREFERENCE, 2021, 91
  • [25] Exploratory Analysis of Provenance Data Using R and the Provenance Package
    Vermeesch, Pieter
    MINERALS, 2019, 9 (03)
  • [26] Using R Package gesca for generalized structured component analysis
    Kim S.
    Cardwell R.
    Hwang H.
    Behaviormetrika, 2017, 44 (1) : 3 - 23
  • [27] hzar: hybrid zone analysis using an R software package
    Derryberry, Elizabeth P.
    Derryberry, Graham E.
    Maley, James M.
    Brumfield, Robb T.
    MOLECULAR ECOLOGY RESOURCES, 2014, 14 (03) : 652 - 663
  • [28] SpatialDDLS: an R package to deconvolute spatial transcriptomics data using neural networks
    Mananes, Diego
    Rivero-Garcia, Ines
    Relano, Carlos
    Torres, Miguel
    Sancho, David
    Jimenez-Carretero, Daniel
    Torroja, Carlos
    Sanchez-Cabo, Fatima
    BIOINFORMATICS, 2024, 40 (02)
  • [29] Using "metaSEM" Package in R
    Hoi, Cathy Ka Weng
    Schumacker, Randall E.
    MEASUREMENT-INTERDISCIPLINARY RESEARCH AND PERSPECTIVES, 2022, 20 (02) : 111 - 119
  • [30] Technical note: Seamless extraction and analysis of river networks in R
    Carraro, Luca
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2023, 27 (20) : 3733 - 3742