Inference for an exponentiated half logistic distribution with application to cancer hybrid censored data

被引:1
|
作者
Raqab, Mohammad Z. [1 ,2 ]
Bdair, Omar M. [3 ]
Rastogi, Manoj K. [4 ]
Al-aboud, Fahad M. [2 ]
机构
[1] Univ Jordan, Dept Math, Amman 11942, Jordan
[2] King Abdulaziz Univ, Jeddah, Saudi Arabia
[3] Al Balqa Appl Univ, Fac Engn Technol, Amman, Jordan
[4] Natl Inst Pharmaceut Educ & Res, Hajipur, India
关键词
Bayesian estimation; Credible intervals; Hybrid Type I censoring; Lindley's method; Maximum likelihood estimation; Metropolis-Hastings algorithm; SURVIVAL ANALYSIS; PARAMETER; PREDICTION; LIKELIHOOD;
D O I
10.1080/03610918.2019.1580724
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, based on hybrid censored sample from a two parameter exponentiated half logistic distribution, we consider the problem of estimating the unknown parameters using frequentist and Bayesian approaches. Expectation-Maximization, Lindley's approximation and Metropolis-Hastings algorithms are used for obtaining point estimators and corresponding confidence intervals for the shape and scale parameters involved in the underlying model. Data analyses involving the survival times of patients suffering from cancer diseases and treated radiotherapy and/or chemotherapy have been performed. Finally, numerical simulation study was conducted to assess the performances of the so developed methods and conclusions on our findings are reported.
引用
收藏
页码:1178 / 1201
页数:24
相关论文
共 50 条
  • [41] Predictive Inference and Parameter Estimation from the Half-Normal Distribution for the Left Censored Data
    Sindhu T.N.
    Hussain Z.
    Annals of Data Science, 2022, 9 (02) : 285 - 299
  • [42] Repetitive sampling inspection plan for cancer patients using exponentiated half-logistic distribution under indeterminacy
    Gadde Srinivasa Rao
    Peter Josephat Kirigiti
    Scientific Reports, 13
  • [43] Repetitive sampling inspection plan for cancer patients using exponentiated half-logistic distribution under indeterminacy
    Rao, Gadde Srinivasa
    Kirigiti, Peter Josephat
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [44] Extended Half-Logistic Distribution with Theory and Lifetime Data Application
    Altun, Emrah
    Khan, Muhammad Nauman
    Alizadeh, Morad
    Ozel, Gamze
    Butt, Nadeem Shafique
    PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2018, 14 (02) : 319 - 331
  • [45] Statistical Inference for Lognormal Distribution with Type-I Progressive Hybrid Censored Data
    Sen T.
    Singh S.
    Tripathi Y.M.
    American Journal of Mathematical and Management Sciences, 2019, 38 (01): : 70 - 95
  • [46] Inference for Weibull distribution based on progressively Type-II hybrid censored data
    Mokhtari, Elham Bayat
    Rad, A. Habibi
    Yousefzadeh, F.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (08) : 2824 - 2838
  • [47] ESTIMATION OF EXPONENTIATED NADARAJAH-HAGHIGHI DISTRIBUTION UNDER PROGRESSIVELY TYPE-II CENSORED SAMPLE WITH APPLICATION TO BLADDER CANCER DATA
    Alhussain, Ziyad A.
    Ahmed, Essam A.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (02): : 631 - 657
  • [48] Exponentiated Ailamujia distribution with statistical inference and applications of medical data
    Rather, Aafaq A.
    Subramanian, C.
    Al-Omari, Amer Ibrahim
    Alanzi, Ayed R. A.
    JOURNAL OF STATISTICS AND MANAGEMENT SYSTEMS, 2022, 25 (04) : 907 - 925
  • [49] Inference based on Type-II hybrid censored data from a Weibull distribution
    Banerjee, Aveek
    Kundu, Debasis
    IEEE TRANSACTIONS ON RELIABILITY, 2008, 57 (02) : 369 - 378
  • [50] Inference Based on Type-II Hybrid Censored Data from a Pareto Distribution
    Cetinkaya, Cagatay
    JOURNAL OF RELIABILITY AND STATISTICAL STUDIES, 2020, 13 (02): : 253 - 264