FIELD-SCALE SOIL MOISTURE ESTIMATION UNDER CORN AND SOYBEAN CROPS USING AIRBORNE SAR DATA

被引:1
|
作者
Ganesan, Ponnurangam Gramani [1 ]
Kim, Seung-Bum [1 ]
Liao, Tien-Hao [2 ]
Michele, Reba L. [3 ]
Cosh, Michael H. [3 ]
机构
[1] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA
[2] CALTECH, Pasadena, CA 91125 USA
[3] ARS, USDA, Washington, DC USA
关键词
Soil moisture; SAR; scattering model;
D O I
10.1109/IGARSS46834.2022.9883664
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The capability of high-resolution L-band Synthetic Aperture Radar (SAR) to retrieve field-scale (< 30 m) soil moisture has been investigated over corn and soybean crop fields. The time-series retrieval algorithm inverts the look-up-table (LUT) representation of physics-based forward scattering model under the assumption of temporally invariant roughness condition. In order to improve the retrieval accuracy of both surface roughness and soil moisture, an enhancement in sensitivity of forward scattering model has been implemented through a linear scaling of LUT. The retrieval algorithm has been applied to the time-series UAVSAR data acquired during AMPM campaign over northern Arkansas in USA. The unbiased RMSE between the forward modeled and observed backscattering coefficients (sigma(0)) are 1.34 dB (HH), 1.83 dB (VV) for corn and 3.77 dB (HH), 3.53 dB (VV) for soybean respectively. The validation of retrieved soil moisture using multi-pol (HH & VV) inputs with in situ measurements shows an unbiased RMSE (correlation) of 0.061 m(3)/m(3) (0.71) and 0.081 m(3)/m(3) (0.47) for corn and soybean crop fields respectively.
引用
收藏
页码:5489 / 5492
页数:4
相关论文
共 50 条
  • [1] Field-scale soil moisture estimation using sentinel-1 GRD SAR data
    Bhogapurapu, Narayanarao
    Dey, Subhadip
    Homayouni, Saeid
    Bhattacharya, Avik
    Rao, Y. S.
    ADVANCES IN SPACE RESEARCH, 2022, 70 (12) : 3845 - 3858
  • [2] Estimation of Soil Moisture for Different Crops Using SAR Polarimetric Data
    Kanmani, K.
    Vasanthi, P.
    Pari, Packirisamy
    Ahamed, N. S. Shafeer
    CIVIL ENGINEERING JOURNAL-TEHRAN, 2023, 9 (06): : 1402 - 1411
  • [3] TOWARDS GLOBAL RETRIEVAL OF FIELD-SCALE SURFACE SOIL MOISTURE USING L-BAND SAR DATA
    Kim, Seungbum
    Liao, Tienhao
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 5452 - 5455
  • [4] INVERSION OF PHYSICAL MODELS USING L-BAND AIRBORNE SAR DATA FOR SOIL MOISTURE ESTIMATES AT FIELD SCALE
    Kim, Seungbum
    Huang, Huanting
    Liao, Tienhao
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 6115 - 6118
  • [5] CONTRIBUTIONS OF GEOPHYSICAL AND C-BAND SAR DATA FOR ESTIMATION OF FIELD SCALE SOIL MOISTURE
    Berg, Aaron
    Krafczek, Mitchell
    Clewley, Daniel
    Whitcomb, Jane
    Akbar, Ruzbeh
    Moghaddam, Mahta
    McNarin, Heather
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 6127 - 6130
  • [6] Using data assimilation to optimize pedotransfer functions using field-scale in situ soil moisture observations
    Cooper, Elizabeth
    Blyth, Eleanor
    Cooper, Hollie
    Ellis, Rich
    Pinnington, Ewan
    Dadson, Simon J.
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2021, 25 (05) : 2445 - 2458
  • [7] Quantifying field-scale soil moisture using electrical resistivity imaging
    Schwartz, Benjamin F.
    Schreiber, Mazdeline E.
    Yan, Tingting
    JOURNAL OF HYDROLOGY, 2008, 362 (3-4) : 234 - 246
  • [8] Field-Scale Soil Moisture Pattern Mapping using Electromagnetic Induction
    Martinez, Gonzalo
    Vanderlinden, Karl
    Vicente Giraldez, Juan
    Espejo, Antonio J.
    Luis Muriel, Jose
    VADOSE ZONE JOURNAL, 2010, 9 (04): : 871 - 881
  • [9] Identifying sampling locations for field-scale soil moisture estimation using K-means clustering
    Van Arkel, Zach
    Kaleita, Amy L.
    WATER RESOURCES RESEARCH, 2014, 50 (08) : 7050 - 7057
  • [10] FIELD-SCALE ASSESSMENT OF MULTI-SENSOR SOIL MOISTURE RETRIEVAL UNDER GRASSLAND
    Jagdhuber, T.
    Fersch, B.
    Schroen, M.
    Jaeger, M.
    Voormansik, K.
    Lopez-Martinez, C.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 6111 - 6114