FIELD-SCALE ASSESSMENT OF MULTI-SENSOR SOIL MOISTURE RETRIEVAL UNDER GRASSLAND

被引:0
|
作者
Jagdhuber, T. [1 ]
Fersch, B. [2 ]
Schroen, M. [3 ]
Jaeger, M. [1 ]
Voormansik, K. [4 ]
Lopez-Martinez, C. [5 ]
机构
[1] German Aerosp Ctr, Microwaves & Radar Inst, POB 1116, D-82234 Wessling, Germany
[2] Karlsruhe Inst Technol, Inst Meteorol & Climate Res, Kreuzeckbahnstr 19, D-82467 Garmisch Partenkirchen, Germany
[3] Helmholtz Ctr Environm Res GmbH UFZ, Dept Monitoring & Explorat Technol, Permoserstr 15, D-04318 Leipzig, Germany
[4] Tartu Observ, Dept Remote Sensing, Observatooriumi 1, EE-61602 Noo, Tartu County, Estonia
[5] Luxembourg Inst Sci & Technol, Dept Environm Res & Innovat, L-4422 Belvaux, Luxembourg
关键词
soil moisture; grassland; field-scale; soil moisture networks; cosmic ray neutron sensing; SAR; polarimetry; CALIBRATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Soil moisture under grassland is assessed at field scale using multiple sensing techniques: in situ soil moisture network measurements (SoilNet), rover-based cosmic ray neutron sensing (CRNS rover) and airborne polarimetric SAR acquisitions (PolSAR) at L-band. The three interdisciplinary techniques acquire on different spatial scales from meters to hectometers. In this study, the methods are blended at the field scale to estimate soil moisture under grassland in a synergistic as well as a stand-alone approach. Data from the TERENO Fendt test site near Weilheim (Germany) were recorded concurrently within the ScaleX campaign on 10th of July, 2015. The multi-sensor assessment reveals that PolSAR estimates benefit fundamentally from the in situ techniques to effectively remove the vegetation scattering component leading to very accurate permittivity estimates (RMSE < 1 [-]). The PolSAR analyses verified the full applicability of the low-parameterized vegetation scattering model to sufficiently represent grassland cover. Moreover, the comparison of all moisture products indicates the constraint of PolSAR to assess only the surface moisture at L-band, while the other two techniques are able to assess also soil moisture of deeper layers, reaching down to the root zone.
引用
收藏
页码:6111 / 6114
页数:4
相关论文
共 50 条
  • [1] Novel Cosmic Ray Neutron Sensor Accurately Captures Field-Scale Soil Moisture Trends under Heterogeneous Soil Textures
    Flynn, Kade D.
    Wyatt, Briana M.
    McInnes, Kevin J.
    [J]. WATER, 2021, 13 (21)
  • [2] Characterization of field-scale soil variation using a stepwise multi-sensor fusion approach and a cost-benefit analysis
    Chatterjee, Sumanta
    Hartemink, Alfred E.
    Triantafilis, John
    Desai, Ankur R.
    Soldat, Doug
    Zhu, Jun
    Townsend, Philip A.
    Zhang, Yakun
    Huang, Jingyi
    [J]. CATENA, 2021, 201
  • [3] RETRIEVAL OF FIELD-SCALE SOIL MOISTURE USING COMPACT POLARIMETRY: PREPARING FOR THE RADARSAT-CONSTELLATION
    McNairn, Heather
    Merzouki, Amine
    Li, Yifeng
    Lampropoulos, George
    Tan, Weikai
    Powers, Jarrett
    Friesen, Matthew
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 6135 - 6138
  • [4] A Wireless Multi-Sensor System For Soil Moisture Measurement
    Aravind, P.
    Gurav, Mangesh
    Mehta, Aakash
    Shelar, Rohan
    John, Jobish
    Palaparthy, Vinay S.
    Singh, Kamlesh Kumar
    Sarik, Shahbaz
    Baghini, Maryam Shojaei
    [J]. 2015 IEEE SENSORS, 2015, : 1042 - 1045
  • [5] Field-Scale Soil Moisture Retrieval Using PALSAR-2 Polarimetric Decomposition and Machine Learning
    Huang, Xiaodong
    Ziniti, Beth
    Cosh, Michael H.
    Reba, Michele
    Wang, Jinfei
    Torbick, Nathan
    [J]. AGRONOMY-BASEL, 2021, 11 (01):
  • [6] Segment-based fusion of multi-sensor multi-scale satellite soil moisture retrievals
    Attarzadeh, Reza
    Bagheri, Hossein
    Khosravi, Iman
    Niazmardi, Saeid
    Akbari, Davood
    [J]. REMOTE SENSING LETTERS, 2022, 13 (12) : 1260 - 1270
  • [7] Retrieval of grassland plant coverage on the Tibetan Plateau based on a multi-scale, multi-sensor and multi-method approach
    Lehnert, Lukas W.
    Meyer, Hanna
    Wang, Yun
    Miehe, Georg
    Thies, Boris
    Reudenbach, Christoph
    Bendix, Joerg
    [J]. REMOTE SENSING OF ENVIRONMENT, 2015, 164 : 197 - 207
  • [8] Least Square Based Iteration Approach for Agricultural Soil Moisture Retrieval Using Multi-Sensor Data
    Zhang, Xiang
    Tang, Xinming
    Gao, Xiaoming
    Zhao, Hui
    [J]. CANADIAN JOURNAL OF REMOTE SENSING, 2020, 46 (02) : 113 - 129
  • [9] TOWARDS GLOBAL RETRIEVAL OF FIELD-SCALE SURFACE SOIL MOISTURE USING L-BAND SAR DATA
    Kim, Seungbum
    Liao, Tienhao
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 5452 - 5455
  • [10] Multi-sensor profiling for precision soil-moisture monitoring
    Francia, Matteo
    Giovanelli, Joseph
    Golfarelli, Matteo
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 197