3D Printed Hydrogel-Based Sensors for Quantifying UV Exposure

被引:24
|
作者
Finny, Abraham Samuel [1 ]
Jiang, Cindy [1 ]
Andreescu, Silvana [1 ]
机构
[1] Clarkson Univ, Dept Chem & Biomol Sci, Potsdam, NY 13699 USA
基金
美国国家科学基金会;
关键词
UV sensors; 3D printable hydrogels; UV exposure; Photoactive nanoparticles; METHYLENE-BLUE; PHOTOCATALYTIC OXIDATION; MALACHITE GREEN; TIO2; DEGRADATION; PHOTODEGRADATION; DYE; OPPORTUNITIES; ALGINATE; BIOINK;
D O I
10.1021/acsami.0c12086
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Exposure to excessive ultraviolet (UV) radiation can have detrimental effects on human health. Inexpensive easy-to-use sensors for monitoring UV radiation can allow broad-scale assessment of UV exposure, but their implementation requires technology that enables rapid and affordable manufacturing of these sensors on a large scale. Herein, we report a novel three-dimensional (3D) printing procedure and printable ink composition that produce robust, flexible, and wearable UV sensors. To fabricate the sensors, a color-changing hydrogel ink was first developed from which standalone constructs were 3D printed. The ink contains alginate, gelatin, photoactive titanium dioxide nanoparticles, and dyes (methyl orange, methylene blue, and malachite green) in which the nanoparticles are used to initiate photocatalytic degradation of dyes, leading to discoloration of the dye. The sensors resemble a color-changing tattoo that loses color upon exposure to UV. The viscosity and ink composition were optimized to achieve printability and tune the mechanical properties (e.g., modulus, hardness) of the sensors. The optimized procedure enabled the one-step fabrication of mechanically stable sensors that can effectively measure outdoor sun exposure by quantifying the decrease in color, visible to the naked eye. Apart from being used as wearable sensors, these sensors have the potential to be used along with UV-based workspace sterilizing devices to ensure that surfaces have been efficiently exposed to UV. The sensors are inexpensive, stable, extremely robust, biodegradable, and easy to use. The tunability, biocompatibility, and printability of the ink offer excellent potential for developing advanced 3D printing methods that, in addition to UV sensors, can be applied more broadly to fabricate other sensing technologies for a variety of other applications.
引用
收藏
页码:43911 / 43920
页数:10
相关论文
共 50 条
  • [31] Hydrogel-based microfluidic device with multiplexed 3D in vitro cell culture
    Clancy, Allison
    Chen, Dayi
    Bruns, Joseph
    Nadella, Jahnavi
    Stealey, Samuel
    Zhang, Yanjia
    Timperman, Aaron
    Zustiak, Silviya P.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [32] Advances in Extrusion 3D Bioprinting: A Focus on Multicomponent Hydrogel-Based Bioinks
    Cui, Xiaolin
    Li, Jun
    Hartanto, Yusak
    Durham, Mitchell
    Tang, Junnan
    Zhang, Hu
    Hooper, Gary
    Lim, Khoon
    Woodfield, Tim
    ADVANCED HEALTHCARE MATERIALS, 2020, 9 (15)
  • [33] Photo-crosslinkable hydrogel-based 3D microfluidic culture device
    Lee, Youlee
    Lee, Jong Min
    Bae, Pan-Kee
    Chung, Il Yup
    Chung, Bong Hyun
    Chung, Bong Geun
    ELECTROPHORESIS, 2015, 36 (7-8) : 994 - 1001
  • [34] Hydrogel-based microfluidic device with multiplexed 3D in vitro cell culture
    Allison Clancy
    Dayi Chen
    Joseph Bruns
    Jahnavi Nadella
    Samuel Stealey
    Yanjia Zhang
    Aaron Timperman
    Silviya P. Zustiak
    Scientific Reports, 12
  • [35] 3D Printed Hydrogel Soft Actuators
    Zolfagharian, Ali
    Kouzani, Abbas Z.
    Khoo, Sui Yang
    Gibson, Ian
    Kaynak, Akif
    PROCEEDINGS OF THE 2016 IEEE REGION 10 CONFERENCE (TENCON), 2016, : 2272 - 2277
  • [36] 3D Printed Edible Hydrogel Electrodes
    Alex Keller
    Leo Stevens
    Gordon G. Wallace
    Marc in het Panhuis
    MRS Advances, 2016, 1 (8) : 527 - 532
  • [37] 3D Printed Edible Hydrogel Electrodes
    Keller, Alex
    Stevens, Leo
    Wallace, Gordon G.
    Panhuis, Marc In Het
    MRS ADVANCES, 2016, 1 (08): : 527 - 532
  • [38] Development and Characterization of a 3D Printed, Keratin-Based Hydrogel
    Jesse K. Placone
    Javier Navarro
    Gregory W. Laslo
    Max J. Lerman
    Alexis R. Gabard
    Gregory J. Herendeen
    Erin E. Falco
    Seth Tomblyn
    Luke Burnett
    John P. Fisher
    Annals of Biomedical Engineering, 2017, 45 : 237 - 248
  • [39] Development and Characterization of a 3D Printed, Keratin-Based Hydrogel
    Placone, Jesse K.
    Navarro, Javier
    Laslo, Gregory W.
    Lerman, Max J.
    Gabard, Alexis R.
    Herendeen, Gregory J.
    Falco, Erin E.
    Tomblyn, Seth
    Burnett, Luke
    Fisher, John P.
    ANNALS OF BIOMEDICAL ENGINEERING, 2017, 45 (01) : 237 - 248
  • [40] Development of Keratin-based, Biocompatible 3D Printed Hydrogel
    Laslo, Gregory W.
    Placone, Jesse K.
    Fisher, John P.
    TISSUE ENGINEERING PART A, 2014, 20 : S137 - S137