First and Second Fundamental Solutions of the Time-Fractional Telegraph Equation of Order 2α

被引:0
|
作者
Ferreira, M. [1 ,2 ]
Rodrigues, M. M. [3 ]
Vieira, N. [3 ]
机构
[1] Polytech Inst Leiria, Sch Technol & Management, P-2411901 Leiria, Portugal
[2] Univ Aveiro, CIDMA Ctr Res & Dev Math & Applicat, Campus Univ Santiago, P-3810193 Aveiro, Portugal
[3] Univ Aveiro, CIDMA Ctr Res & Dev Math & Applicat, Dept Math, Campus Univ Santiago, P-3810193 Aveiro, Portugal
关键词
D O I
10.1063/1.5081599
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work we obtain the first and second fundamental solutions of the multidimensional time-fractional equation of order 2 alpha, alpha is an element of]0, 1], where the two time-fractional derivatives are in the Caputo sense. We obtain representations of the fundamental solutions in terms of Hankel transform, double Mellin-Barnes integral, and H-functions of two variables. As an application, the fundamental solutions are used to solve a Cauchy problem, and to study telegraph process with Brownian time.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Solving Time-Fractional Order Telegraph Equation Via Sinc–Legendre Collocation Method
    N. H. Sweilam
    A. M. Nagy
    Adel A. El-Sayed
    [J]. Mediterranean Journal of Mathematics, 2016, 13 : 5119 - 5133
  • [22] A novel method based on fractional order Gegenbauer wavelet operational matrix for the solutions of the multi-term time-fractional telegraph equation of distributed order
    Marasi, H. R.
    Derakhshan, M. H.
    Ghuraibawi, Amer A.
    Kumar, Pushpendra
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 217 : 405 - 424
  • [23] A Second Order Time Accurate SUSHI Method for the Time-Fractional Diffusion Equation
    Bradji, Abdallah
    [J]. NUMERICAL METHODS AND APPLICATIONS, NMA 2018, 2019, 11189 : 197 - 206
  • [24] A Second-Order Scheme for the Generalized Time-Fractional Burgers' Equation
    Chawla, Reetika
    Kumar, Devendra
    Singh, Satpal
    [J]. JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2024, 19 (01):
  • [25] Finite Difference Approximation of a Generalized Time-Fractional Telegraph Equation
    Delic, Aleksandra
    Jovanovic, Bosko S.
    Zivanovic, Sandra
    [J]. COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2020, 20 (04) : 595 - 607
  • [26] A local meshless method to approximate the time-fractional telegraph equation
    Kumar, Alpesh
    Bhardwaj, Akanksha
    Dubey, Shruti
    [J]. ENGINEERING WITH COMPUTERS, 2021, 37 (04) : 3473 - 3488
  • [27] Time-fractional telegraph equation with 111-Hilfer derivatives
    Vieira, N.
    Ferreira, M.
    Rodrigues, M. M.
    [J]. CHAOS SOLITONS & FRACTALS, 2022, 162
  • [28] A MODIFIED REPRODUCING KERNEL METHOD FOR A TIME-FRACTIONAL TELEGRAPH EQUATION
    Wang, Yulan
    Du, Mingling
    Temuer, Chaolu
    [J]. THERMAL SCIENCE, 2017, 21 (04): : 1575 - 1580
  • [29] Nonlocal Telegraph Equation in Frame of the Conformable Time-Fractional Derivative
    Bouaouid, Mohamed
    Hilal, Khalid
    Melliani, Said
    [J]. ADVANCES IN MATHEMATICAL PHYSICS, 2019, 2019
  • [30] Neural Network Method for Solving Time-Fractional Telegraph Equation
    Ibrahim, Wubshet
    Bijiga, Lelisa Kebena
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021