Toward Domain Transfer for No-Reference Quality Prediction of Asymmetrically Distorted Stereoscopic Images

被引:24
|
作者
Shao, Feng [1 ]
Zhang, Zhuqing [1 ]
Jiang, Qiuping [1 ]
Lin, Weisi [2 ]
Jiang, Gangyi [1 ]
机构
[1] Ningbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Zhejiang, Peoples R China
[2] Nanyang Technol Univ, Sch Comp Engn, Ctr Multimedia & Network Technol, Singapore 639798, Singapore
关键词
Category consistent term; dictionary learning; domain transfer; label consistent K-singular value decomposition (LC-KSVD); no-reference (NR) quality prediction; SPARSE REPRESENTATION; DICTIONARY; SIMILARITY; SCORES;
D O I
10.1109/TCSVT.2016.2628082
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We have presented a no-reference quality prediction method for asymmetrically distorted stereoscopic images, which aims to transfer the information from source feature domain to its target quality domain using a label consistent K-singular value decomposition classification framework. To this end, we construct a category-deviation database for dictionary learning that assigns a label for each stereoscopic image to indicate if it is noticeable or unnoticeable by human eyes. Then, by incorporating a category consistent term into the objective function, we learn view-specific feature and quality dictionaries to establish a semantic framework between the source feature domain and the target quality domain. The quality pooling is comparatively simple and only needs to estimate the quality score based on the classification probability. The experimental results demonstrate the effectiveness of our blind metric.
引用
收藏
页码:573 / 585
页数:13
相关论文
共 50 条
  • [41] No-reference image quality metrics for color domain modified images
    Khan, Muhammad Usman
    Luo, Ming Ronnier
    Tian, Dalin
    [J]. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2022, 39 (06):
  • [42] No-reference image quality metrics for color domain modified images
    Khan, Muhammad Usman
    Luo, Ming Ronnier
    Tian, Dalin
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2022, 39 (06) : B65 - B77
  • [43] QUALITY PREDICTION OF ASYMMETRICALLY COMPRESSED STEREOSCOPIC VIDEOS
    Wang, Jiheng
    Wang, Shiqi
    Wang, Zhou
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 3427 - 3431
  • [44] 3D saliency guided deep quality predictor for no-reference stereoscopic images
    Messai, Oussama
    Chetouani, Aladine
    Hachouf, Fella
    Seghir, Zianou Ahmed
    [J]. NEUROCOMPUTING, 2022, 478 : 22 - 36
  • [45] NO-REFERENCE QUALITY ASSESSMENT OF STEREOSCOPIC IMAGES BASED ON BINOCULAR COMBINATION OF LOCAL FEATURES STATISTICS
    Fan, Yu
    Larabi, Mohamed-Chaker
    Cheikh, Faouzi Alaya
    Fernandez-Maloigne, Christine
    [J]. 2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 3538 - 3542
  • [46] Perceptual Depth Quality in Distorted Stereoscopic Images
    Wang, Jiheng
    Wang, Shiqi
    Ma, Kede
    Wang, Zhou
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (03) : 1202 - 1215
  • [47] Asymmetrically Distorted Stereoscopic Image Quality Assessment Based on Ocular Dominance
    Tang Y.-L.
    Jiang S.-L.
    Xu S.-P.
    Liu T.-Y.
    Li C.-X.
    [J]. Zidonghua Xuebao/Acta Automatica Sinica, 2019, 45 (11): : 2092 - 2106
  • [48] No-Reference Quality Assessment of Contrast-Distorted Images Based on Natural Scene Statistics
    Fang, Yuming
    Ma, Kede
    Wang, Zhou
    Lin, Weisi
    Fang, Zhijun
    Zhai, Guangtao
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (07) : 838 - 842
  • [49] A no-reference optical flow-based quality evaluator for stereoscopic videos in curvelet domain
    Yang, Jiachen
    Wang, Huanling
    Lu, Wen
    Li, Baihua
    Badii, Atta
    Meng, Qinggang
    [J]. INFORMATION SCIENCES, 2017, 414 : 133 - 146
  • [50] Color Gaussian Jet Features For No-Reference Quality Assessment of Multiply-Distorted Images
    Hadizadeh, Hadi
    Bajic, Ivan V.
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (12) : 1717 - 1721