Toward Domain Transfer for No-Reference Quality Prediction of Asymmetrically Distorted Stereoscopic Images

被引:24
|
作者
Shao, Feng [1 ]
Zhang, Zhuqing [1 ]
Jiang, Qiuping [1 ]
Lin, Weisi [2 ]
Jiang, Gangyi [1 ]
机构
[1] Ningbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Zhejiang, Peoples R China
[2] Nanyang Technol Univ, Sch Comp Engn, Ctr Multimedia & Network Technol, Singapore 639798, Singapore
关键词
Category consistent term; dictionary learning; domain transfer; label consistent K-singular value decomposition (LC-KSVD); no-reference (NR) quality prediction; SPARSE REPRESENTATION; DICTIONARY; SIMILARITY; SCORES;
D O I
10.1109/TCSVT.2016.2628082
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We have presented a no-reference quality prediction method for asymmetrically distorted stereoscopic images, which aims to transfer the information from source feature domain to its target quality domain using a label consistent K-singular value decomposition classification framework. To this end, we construct a category-deviation database for dictionary learning that assigns a label for each stereoscopic image to indicate if it is noticeable or unnoticeable by human eyes. Then, by incorporating a category consistent term into the objective function, we learn view-specific feature and quality dictionaries to establish a semantic framework between the source feature domain and the target quality domain. The quality pooling is comparatively simple and only needs to estimate the quality score based on the classification probability. The experimental results demonstrate the effectiveness of our blind metric.
引用
收藏
页码:573 / 585
页数:13
相关论文
共 50 条
  • [1] Quality Prediction of Asymmetrically Distorted Stereoscopic 3D Images
    Wang, Jiheng
    Rehman, Abdul
    Zeng, Kai
    Wang, Shiqi
    Wang, Zhou
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (11) : 3400 - 3414
  • [2] QUALITY PREDICTION OF ASYMMETRICALLY DISTORTED STEREOSCOPIC IMAGES FROM SINGLE VIEWS
    Wang, Jiheng
    Zeng, Kai
    Wang, Zhou
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2014,
  • [3] Unified No-Reference Quality Assessment of Singly and Multiply Distorted Stereoscopic Images
    Jiang, Qiuping
    Shao, Feng
    Gao, Wei
    Chen, Zhuo
    Jiang, Gangyi
    Ho, Yo-Sung
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (04) : 1866 - 1881
  • [4] Learning Sparse Representation for No-Reference Quality Assessment of Multiply Distorted Stereoscopic Images
    Shao, Feng
    Tian, Weijun
    Lin, Weisi
    Jiang, Gangyi
    Dai, Qionghai
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2017, 19 (08) : 1821 - 1836
  • [5] No-Reference Quality Prediction of Distorted/Decompressed Images using ANFIS
    De, Indrajit
    Sil, Jaya
    [J]. PROCEEDINGS OF THE 2009 INTERNATIONAL CONFERENCE ON COMPUTER TECHNOLOGY AND DEVELOPMENT, VOL 2, 2009, : 90 - +
  • [6] No-Reference Quality Assessment for Multiply-Distorted Images in Gradient Domain
    Li, Qiaohong
    Lin, Weisi
    Fang, Yuming
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (04) : 541 - 545
  • [7] VISUAL QUALITY PREDICTION ON DISTORTED STEREOSCOPIC IMAGES
    Lin, Ching-Ti
    Liu, Tsung-Jung
    Liu, Kuan-Hsien
    [J]. 2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 3480 - 3484
  • [8] No-Reference Task Performance Prediction on Distorted LWIR Images
    Goodall, Todd
    Bovik, Alan C.
    [J]. 2014 IEEE SOUTHWEST SYMPOSIUM ON IMAGE ANALYSIS AND INTERPRETATION (SSIAI 2014), 2014, : 89 - 92
  • [9] No-Reference Quality Assessment for Contrast-Distorted Images
    Liu, Yutao
    Li, Xiu
    [J]. IEEE ACCESS, 2020, 8 : 84105 - 84115
  • [10] No-Reference Image Quality Assessment for Contrast Distorted Images
    Zhu, Yiming
    Chen, Xianzhi
    Dai, Shengkui
    [J]. IMAGE AND GRAPHICS (ICIG 2021), PT III, 2021, 12890 : 241 - 252