Shear thinning in non-Brownian suspensions

被引:80
|
作者
Chatte, Guillaume [1 ]
Comtet, Jean [2 ]
Nigues, Antoine [2 ]
Bocquet, Lyderic [2 ]
Siria, Alessandro [2 ]
Ducouret, Guylaine [1 ]
Lequeux, Francois [1 ]
Lenoir, Nicolas [3 ,4 ]
Ovarlez, Guillaume [5 ]
Colin, Annie [1 ,6 ]
机构
[1] PSL Res Univ, ESPCI Paris, Sci & Ingn Mat Molle, CNRS,UMR 7615, 10 Rue Vauquelin, F-75231 Paris 05, France
[2] PSL Res Univ, Ecole Normale Super, Lab Phys Stat, UMR CNRS 8550, 24 Rue Lhomond, F-75005 Paris 05, France
[3] Univ Bordeaux, CNRS, UMS 3626, PLACAMAT, F-33608 Pessac, France
[4] UJF Grenoble 1, Grenoble INP, CNRS, UMR 5521,Lab 3SR, Grenoble, France
[5] Univ Bordeaux, CNRS, LOF, Solvay,UMR 5258, F-33608 Pessac, France
[6] Univ Bordeaux, Ctr Rech Paul Pascal, UPR 8641, CNRS, 115 Ave Schweitzer, F-33600 Pessac, France
关键词
PLASTISOL; RHEOLOGY; VISCOSITY; BEHAVIOR; FLOW;
D O I
10.1039/c7sm01963g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We study the flow of suspensions of non-Brownian particles dispersed into a Newtonian solvent. Combining capillary rheometry and conventional rheometry, we evidence a succession of two shear thinning regimes separated by a shear thickening one. Through X-ray radiography measurements, we show that during each of those regimes, the flow remains homogeneous and does not involve particle migration. Using a quartz-tuning fork based atomic force microscope, we measure the repulsive force profile and the microscopic friction coefficient m between two particles immersed into the solvent, as a function of normal load. Coupling measurements from those three techniques, we propose that (1) the first shear-thinning regime at low shear rates occurs for a lubricated rheology and can be interpreted as a decrease of the effective volume fraction under increasing particle pressures, due to short-ranged repulsive forces and (2) the second shear thinning regime after the shear-thickening transition occurs for a frictional rheology and can be interpreted as stemming from a decrease of the microscopic friction coefficient at large normal load.
引用
收藏
页码:879 / 893
页数:15
相关论文
共 50 条
  • [31] Rheology of Confined Non-Brownian Suspensions
    Fornari, Walter
    Brandt, Luca
    Chaudhuri, Pinaki
    Lopez, Cyan Umbert
    Mitra, Dhrubaditya
    Picano, Francesco
    PHYSICAL REVIEW LETTERS, 2016, 116 (01)
  • [32] Rheology of bidisperse non-Brownian suspensions
    Singh, Abhinendra
    Ness, Christopher
    Sharma, Abhishek K.
    Pablo, Juan J. de
    Jaeger, Heinrich M.
    PHYSICAL REVIEW E, 2024, 110 (03)
  • [33] Rheology of bidisperse non-Brownian suspensions
    Singh, Abhinendra
    Ness, Christopher
    Sharma, Abhishek K.
    de Pablo, Juan J.
    Jaeger, Heinrich M.
    arXiv, 2023,
  • [34] Depletion forces induce visco-elasto-capillary thinning of non-Brownian suspensions
    Harich, R.
    Deblais, A.
    Colin, A.
    Kellay, H.
    EPL, 2016, 114 (05)
  • [35] Roughness induced shear thickening in frictional non-Brownian suspensions: A numerical study
    More, R. V.
    Ardekani, A. M.
    JOURNAL OF RHEOLOGY, 2020, 64 (02) : 283 - 297
  • [36] Apparent slip mechanism between two spheres based on solvent rheology: Theory and implication for the shear thinning of non-Brownian suspensions
    Vazquez-Quesada, A.
    Espanol, Pep
    Ellero, M.
    PHYSICAL REVIEW FLUIDS, 2018, 3 (12):
  • [37] Frictional effects on shear-induced diffusion in suspensions of non-Brownian particles
    Zhang, Han
    Kopelevich, Dmitry I.
    Butler, Jason E.
    JOURNAL OF FLUID MECHANICS, 2024, 1001
  • [38] Non-Brownian suspensions:: simulation and linear response
    Schwarzer, S
    Höfler, K
    Manwart, C
    Wachmann, B
    Herrmann, H
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1999, 266 (1-4) : 249 - 254
  • [39] Normal stresses in concentrated non-Brownian suspensions
    Dbouk, T.
    Lobry, L.
    Lemaire, E.
    JOURNAL OF FLUID MECHANICS, 2013, 715 : 239 - 272
  • [40] Forming a composite model for non-Brownian suspensions
    Tanner, Roger I.
    Dai, Shaocong
    PHYSICS OF FLUIDS, 2022, 34 (08)