On Uncertainty Principle for Quaternionic Linear Canonical Transform

被引:68
|
作者
Kou, Kit Ian [1 ]
Ou, Jian-Yu [1 ]
Morais, Joao [2 ]
机构
[1] Univ Macau, Fac Sci & Technol, Dept Math, Taipa, Peoples R China
[2] Univ Aveiro, Ctr Res & Dev Math & Applicat, Dept Math, Aveiro, Portugal
关键词
FRACTIONAL FOURIER; PHASE-SPACE; REAL SIGNALS; DOMAINS; THEOREM;
D O I
10.1155/2013/725952
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We generalize the linear canonical transform (LCT) to quaternion-valued signals, known as the quaternionic linear canonical transform (QLCT). Using the properties of the LCT we establish an uncertainty principle for the QLCT. This uncertainty principle prescribes a lower bound on the product of the effective widths of quaternion-valued signals in the spatial and frequency domains. It is shown that only a 2D Gaussian signal minimizes the uncertainty.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Uncertainty Principles for Linear Canonical Transform
    Zhao, Juan
    Tao, Ran
    Li, Yan-Lei
    Wang, Yue
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (07) : 2856 - 2858
  • [22] Uncertainty inequalities for linear canonical transform
    Xu, Guanlei
    Wang, Xiaotong
    Xu, Xiaogang
    IET SIGNAL PROCESSING, 2009, 3 (05) : 392 - 402
  • [23] Uncertainty principle for linear canonical transform using matrix decomposition of absolute spread matrix
    Zhang, Zhi-Chao
    DIGITAL SIGNAL PROCESSING, 2019, 89 : 145 - 154
  • [24] Spacetime Linear Canonical Transform and the Uncertainty Principles
    Teali, Aajaz A.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (06)
  • [25] Uncertainty principles for the offset linear canonical transform
    Abdelghani Elgargati
    Radouan Daher
    Journal of Pseudo-Differential Operators and Applications, 2021, 12
  • [26] Uncertainty Principles for The Quaternion Linear Canonical Transform
    Achak, A.
    Abouelaz, A.
    Daher, R.
    Safouane, N.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2019, 29 (05)
  • [27] Uncertainty principles for the offset linear canonical transform
    Elgargati, Abdelghani
    Daher, Radouan
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2021, 12 (03)
  • [28] Uncertainty Inequalities for the Linear Canonical Hilbert Transform
    Shuiqing Xu
    Yi Chai
    Youqiang Hu
    Li Feng
    Lei Huang
    Circuits, Systems, and Signal Processing, 2018, 37 : 4584 - 4598
  • [29] Uncertainty Principles for the Offset Linear Canonical Transform
    Haiye Huo
    Circuits, Systems, and Signal Processing, 2019, 38 : 395 - 406
  • [30] Spacetime Linear Canonical Transform and the Uncertainty Principles
    Aajaz A. Teali
    Mediterranean Journal of Mathematics, 2023, 20