Convergence Analysis and the Nested Refinement for the Trapezoid Finite Element

被引:0
|
作者
Wang, Qisheng [1 ]
Wang, Xueling [1 ]
机构
[1] Wuyi Univ, Sch Math & Computat Sci, Jiangmen 529020, Peoples R China
关键词
Trapezoid finite element; Nested refinement; Middle points and trisection points; Q(1) element; Convergence analysis;
D O I
10.4028/www.scientific.net/AMR.317-319.1921
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a class of the new method of nested refinement based on self-adaption grid is discussed. The k level trapezoid grid nested refinement on the plan domain Omega and some related properties are investigated, and the convergence results are obtained for the second order self-adjoint elliptic problem on the trapezoid finite element.
引用
收藏
页码:1921 / +
页数:2
相关论文
共 50 条
  • [1] Convergence Analysis for the Nested Refinement of Triangular Finite Element
    Wang, Qisheng
    Zhao, Yigao
    [J]. EQUIPMENT MANUFACTURING TECHNOLOGY AND AUTOMATION, PTS 1-3, 2011, 317-319 : 1926 - 1930
  • [2] Convergence analysis of the adaptive finite element method with the red-green refinement
    ZHAO XuYing 1
    2 Key Laboratory of Mathematics and Applied Mathematics (Peking University)
    3 Graduate University of Chinese Academy of Sciences
    [J]. Science China Mathematics, 2010, 53 (02) : 499 - 512
  • [3] Convergence analysis of the adaptive finite element method with the red-green refinement
    XuYing Zhao
    Jun Hu
    ZhongCi Shi
    [J]. Science China Mathematics, 2010, 53 : 499 - 512
  • [4] Convergence analysis of the adaptive finite element method with the red-green refinement
    Zhao XuYing
    Hu Jun
    Shi ZhongCi
    [J]. SCIENCE CHINA-MATHEMATICS, 2010, 53 (02) : 499 - 512
  • [5] Finite element basis functions for nested meshes of nonuniform refinement level
    Hill, V
    Farle, O
    Dyczij-Edlinger, R
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2004, 40 (02) : 981 - 984
  • [6] Adaptive mesh refinement in finite element analysis
    Rajasekaran, S
    Remeshan, V
    [J]. INDIAN JOURNAL OF ENGINEERING AND MATERIALS SCIENCES, 1999, 6 (03) : 135 - 143
  • [7] Triangular-element finite-element analysis of a trapezoid polymer optical waveguide
    Tsao, SL
    Wu, JS
    Her, YL
    [J]. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 1997, 15 (02) : 87 - 89
  • [8] CONVERGENCE ANALYSIS FOR AN ELEMENT-BY-ELEMENT FINITE-ELEMENT METHOD
    LI, ZP
    REED, MB
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1995, 123 (1-4) : 33 - 42
  • [9] An Improvement of Convergence in Finite Element Analysis With Infinite Element Using Deflation
    Ito, Hiroki
    Watanabe, Kota
    Igarashi, Hajime
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2012, 48 (02) : 667 - 670
  • [10] ANALYSIS OF CONVERGENCE OF MIXED FINITE-ELEMENT METHODS
    FORTIN, M
    [J]. RAIRO-ANALYSE NUMERIQUE-NUMERICAL ANALYSIS, 1977, 11 (04): : 341 - 354