Convergence Analysis for the Nested Refinement of Triangular Finite Element

被引:0
|
作者
Wang, Qisheng [1 ]
Zhao, Yigao [1 ]
机构
[1] Wuyi Univ, Sch Math & Computat Sci, Jiangmen 529020, Peoples R China
关键词
Triangular finite element; Nested element; Middle points; Poisson equation; Convergence analysis;
D O I
10.4028/www.scientific.net/AMR.317-319.1926
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, the method of the nested refinement for triangular mesh and some relevant conclusions are considered. The k level triangular grid nested refinement on the plan domain Omega and some related properties are discussed, and the convergence results are obtained for the first boundary value problem of Poisson equation under the nested refinement of triangular finite element.
引用
收藏
页码:1926 / 1930
页数:5
相关论文
共 50 条
  • [1] Convergence Analysis and the Nested Refinement for the Trapezoid Finite Element
    Wang, Qisheng
    Wang, Xueling
    [J]. EQUIPMENT MANUFACTURING TECHNOLOGY AND AUTOMATION, PTS 1-3, 2011, 317-319 : 1921 - +
  • [2] Convergence analysis for eigenvalue approximations on triangular finite element meshes
    Todorov, TD
    [J]. NUMERICAL ANALYSIS AND ITS APPLICATIONS, 2005, 3401 : 558 - 565
  • [3] Topological refinement procedures for triangular finite element meshes
    Canann, SA
    Muthukrishna, SN
    Phillips, RK
    [J]. ENGINEERING WITH COMPUTERS, 1996, 12 (3-4) : 243 - 255
  • [4] Convergence analysis of the adaptive finite element method with the red-green refinement
    ZHAO XuYing 1
    2 Key Laboratory of Mathematics and Applied Mathematics (Peking University)
    3 Graduate University of Chinese Academy of Sciences
    [J]. Science China Mathematics, 2010, 53 (02) : 499 - 512
  • [5] Convergence analysis of the adaptive finite element method with the red-green refinement
    XuYing Zhao
    Jun Hu
    ZhongCi Shi
    [J]. Science China Mathematics, 2010, 53 : 499 - 512
  • [6] Convergence analysis of the adaptive finite element method with the red-green refinement
    Zhao XuYing
    Hu Jun
    Shi ZhongCi
    [J]. SCIENCE CHINA-MATHEMATICS, 2010, 53 (02) : 499 - 512
  • [7] Finite element basis functions for nested meshes of nonuniform refinement level
    Hill, V
    Farle, O
    Dyczij-Edlinger, R
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2004, 40 (02) : 981 - 984
  • [8] Superconvergence analysis for cubic triangular element of the finite element
    Zhu, QD
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2000, 18 (05) : 541 - 550
  • [9] Adaptive mesh refinement in finite element analysis
    Rajasekaran, S
    Remeshan, V
    [J]. INDIAN JOURNAL OF ENGINEERING AND MATERIALS SCIENCES, 1999, 6 (03) : 135 - 143
  • [10] On the convergence of a triangular mixed finite element method for Reissner-Mindlin plates
    Duran, RG
    Liberman, E
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1996, 6 (03): : 339 - 352