Pragmatical adaptive chaos control from a new double van der Pol system to a new double Duffing system

被引:10
|
作者
Ge, Zheng-Ming [1 ]
Li, Shih-Chung [1 ]
Li, Shih-Yu [1 ]
Chang, Ching-Ming [1 ]
机构
[1] Natl Chiao Tung Univ, Dept Mech Engn, Hsinchu 300, Taiwan
关键词
pragmatical adaptive control; double van der Pol system; double Duffing system; uncoupled chaotic system;
D O I
10.1016/j.amc.2008.05.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new pragmatical adaptive control method for different chaotic systems is proposed. Traditional chaos control is limited to decrease chaos of one chaotic system. This method enlarges the effective scope of chaos control. We can control a chaotic system, e.g. a new chaotic double van der Pol system, to a given chaotic or regular system, e.g. a new chaotic double Duffing system or to a damped simple harmonic system. By a pragmatical theorem of asymptotical stability based on an assumption of equal probability of initial point, an adaptive control law is derived such that it can be proved strictly that the common zero solution of error dynamics and of parameter dynamics is asymptotically stable. Numerical simulations are given to show the effectiveness of the proposed scheme. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:513 / 522
页数:10
相关论文
共 50 条
  • [1] Chaos analysis for a class of impulse Duffing-van der Pol system
    Li, Shuqun
    Zhou, Liangqiang
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2023, 78 (05): : 395 - 403
  • [2] Chaos generalized synchronization of new Mathieu-Van der Pol systems with new Duffing-Van der Pol systems as functional system by GYC partial region stability theory
    Ge, Zheng-Ming
    Li, Shih-Yu
    APPLIED MATHEMATICAL MODELLING, 2011, 35 (11) : 5245 - 5264
  • [3] Amplitude control of limit cycle in a van der Pol Duffing system
    欧阳克俭
    唐驾时
    梁翠香
    Chinese Physics B, 2009, (11) : 4748 - 4753
  • [4] Chaos synchronization between single and double wells Duffing-Van der Pol oscillators using active control
    Njah, A. N.
    Vincent, U. E.
    CHAOS SOLITONS & FRACTALS, 2008, 37 (05) : 1356 - 1361
  • [5] Bifurcation and Chaos Control of Van der pol System with Delay
    Ren Chuan-bo
    Zhao Zhen
    Liu Lin
    2011 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, 2011, : 957 - 963
  • [6] On the dynamics of a Van der Pol–Duffing snap system
    Vinícius Wiggers
    Paulo C. Rech
    The European Physical Journal B, 2022, 95
  • [7] Chaos control of new Mathieu-Van der Pol systems with new Mathieu-Duffing systems as functional system by GYC partial region stability theory
    Ge, Zheng-Ming
    Li, Shih-Yu
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (09) : 4047 - 4059
  • [8] Amplitude control of limit cycle in a van der Pol-Duffing system
    Ouyang Ke-Jian
    Tang Jia-Shi
    Liang Cui-Xiang
    CHINESE PHYSICS B, 2009, 18 (11) : 4748 - 4753
  • [9] Bistable phase synchronization and chaos in a system of coupled van der Pol-Duffing oscillators
    Kozlov, AK
    Sushchik, MM
    Molkov, YI
    Kuznetsov, AS
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (12): : 2271 - 2277
  • [10] Bifurcation and chaos in the double-well Duffing-van der Pol oscillator: Numerical and analytical studies
    Venkatesan, A
    Lakshmanan, M
    PHYSICAL REVIEW E, 1997, 56 (06) : 6321 - 6330