Band-gap engineering in fluorographene nanoribbons under uniaxial strain

被引:8
|
作者
Zhang, Yan
Li, Qunxiang [1 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
关键词
GRAPHENE;
D O I
10.1063/1.4863335
中图分类号
O59 [应用物理学];
学科分类号
摘要
Based on extensive first-principles calculations, we report the structural and electronic properties of fluorinated graphene, i.e., fluorographene nanoribbons (FGNRs) under uniaxial strain. Our results indicate that the FGNRs are semiconductors with wide direct band gaps regardless of their edge structures. Moreover, the band gap of FGNR can be effectively modulated nonlinearly with the applied uniaxial elastic strain, where the band gap value increases first and then reduces when the applied strain changes from -10.0% to 10.0%. This abnormal behavior mainly originates from the electronic structures of valence and conduction band edges, which is quite different from previously reported linear behavior on graphene nanoribbon. Our results imply the great potential applications of FGNRs in the optical electronics. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Band-Gap Engineering via Tailored Line Defects in Boron-Nitride Nanoribbons, Sheets, and Nanotubes
    Li, Xiuling
    Wu, Xiaojun
    Zeng, Xiao Cheng
    Yang, Jinlong
    ACS NANO, 2012, 6 (05) : 4104 - 4112
  • [22] Effective Mass versus Band Gap in Graphene Nanoribbons: Influence of H-Passivation and Uniaxial Strain
    Tayo, Benjamin O.
    MATERIALS FOCUS, 2014, 3 (04) : 248 - 254
  • [23] Band-gap engineering of SnO2
    Mounkachi, O.
    Salmani, E.
    Lakhal, M.
    Ez-Zahraouy, H.
    Hamedoun, M.
    Benaissa, M.
    Kara, A.
    Ennaoui, A.
    Benyoussef, A.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 148 : 34 - 38
  • [24] NEW HETEROJUNCTION DEVICES BY BAND-GAP ENGINEERING
    CAPASSO, F
    PHYSICA B & C, 1985, 129 (1-3): : 92 - 106
  • [25] Band-gap engineering of amorphous photonic materials
    Wang, YQ
    Jian, SS
    PHYSICS LETTERS A, 2006, 352 (06) : 550 - 553
  • [26] BAND-GAP ENGINEERING IN PERIODIC ELASTIC COMPOSITES
    KUSHWAHA, MS
    HALEVI, P
    APPLIED PHYSICS LETTERS, 1994, 64 (09) : 1085 - 1087
  • [27] Uniplanar compact photonic band-gap on uniaxial anisotropic substrate
    Lin, BQ
    Xu, LJ
    Yuan, NC
    ACTA PHYSICA SINICA, 2005, 54 (08) : 3711 - 3715
  • [28] Strain and Band-Gap Engineering in Ge-Sn Alloys via P Doping
    Prucnal, Slawomir
    Berencen, Yonder
    Wang, Mao
    Grenzer, Joerg
    Voelskow, Matthias
    Huebner, Rene
    Yamamoto, Yuji
    Scheit, Alexander
    Baerwolf, Florian
    Zviagin, Vitaly
    Schmidt-Grund, Ruediger
    Grundmann, Marius
    Zuk, Jerzy
    Turek, Marcin
    Drozdziel, Andrzej
    Pyszniak, Krzysztof
    Kudrawiec, Robert
    Polak, Maciej P.
    Rebohle, Lars
    Skorupa, Wolfgang
    Helm, Manfred
    Zhou, Shengqiang
    PHYSICAL REVIEW APPLIED, 2018, 10 (06):
  • [29] Strain-induced band-gap engineering of graphene monoxide and its effect on graphene
    Pu, H. H.
    Rhim, S. H.
    Hirschmugl, C. J.
    Gajdardziska-Josifovska, M.
    Weinert, M.
    Chen, J. H.
    PHYSICAL REVIEW B, 2013, 87 (08)
  • [30] Band gap of carbon nanotubes under combined uniaxial-torsional strain
    Zhang, Yong
    Han, Mei
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2011, 43 (10): : 1774 - 1778