Quantum Galois correspondence for subfactors

被引:4
|
作者
Kawahigashi, Y [1 ]
机构
[1] Univ Tokyo, Dept Math Sci, Tokyo 1538914, Japan
关键词
D O I
10.1006/jfan.1999.3453
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Ocneanu has obtained a certain type of quantized Galois correspondence for the Jones subfactors of type A, and his arguments are quite general. By making use of them in a more general context, we define a notion of a subequivalent paragroup and establish a bijective correspondence between generalized intermediate subfactors in the sense of Ocneanu and subequivalent paragroups for a given strongly amenable subfactors of type II, in the sense of Pops, by encoding the subequivalence in terms of a commuting square. For this encoding, we generalize Sate's construction of equivalent subfactors of finite depth from a single commuting square, to strongly amenable subfactors. We also explain a relation between our notion of subequivalent paragroups and sublattices of a Popa system, using open string bimodules. (C) 1999 Academic Press.
引用
收藏
页码:481 / 497
页数:17
相关论文
共 50 条
  • [1] Quantum Galois groups of subfactors
    Bhattacharjee, Suvrajit
    Chirvasitu, Alexandru
    Goswami, Debashish
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2022, 33 (02)
  • [2] Galois Correspondence and Fourier Analysis on Local Discrete Subfactors
    Marcel Bischoff
    Simone Del Vecchio
    Luca Giorgetti
    [J]. Annales Henri Poincaré, 2022, 23 : 2979 - 3020
  • [3] Galois Correspondence and Fourier Analysis on Local Discrete Subfactors
    Bischoff, Marcel
    Del Vecchio, Simone
    Giorgetti, Luca
    [J]. ANNALES HENRI POINCARE, 2022, 23 (08): : 2979 - 3020
  • [4] Galois quantum groups of II1-subfactors
    Hayashi, T
    [J]. TOHOKU MATHEMATICAL JOURNAL, 1999, 51 (03) : 365 - 389
  • [5] On Galois theory from subfactors
    Monteiro, Eduardo R.
    Pinto, Paulo R.
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 42 (01) : 46 - 51
  • [6] A Galois correspondence for compact quantum group actions
    Tomatsu, Reiji
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 633 : 165 - 182
  • [7] Galois groups and an obstruction to principal graphs of subfactors
    Asaeda, Marta
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2007, 18 (02) : 191 - 202
  • [8] A Galois correspondence for II1 factors and quantum groupoids
    Nikshych, D
    Vainerman, L
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 178 (01) : 113 - 142
  • [9] On the Galois correspondence for Hopf Galois structures
    Childs, Lindsay N.
    [J]. NEW YORK JOURNAL OF MATHEMATICS, 2017, 23 : 1 - 10
  • [10] GALOIS CORRESPONDENCE IN TOPOLOGY
    PREUSS, G
    [J]. MONATSHEFTE FUR MATHEMATIK, 1971, 75 (05): : 447 - &