Hopf Galois extension;
finite commutative nilpotent ring;
Fundamental Theorem of Galois Theory;
SEPARABLE FIELD-EXTENSIONS;
RINGS;
D O I:
暂无
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We study the question of the surjectivity of the Galois correspondence from subHopf algebras to subfields given by the Fundamental Theorem of Galois Theory for abelian Hopf Galois structures on a Galois extension of fields with Galois group Gamma, a finite abelian p-group. Applying the connection between regular subgroups of the holomorph of a finite abelian p-group (G, +) and associative, commutative nilpotent algebra structures A on (G, +), we show that if A gives rise to a H-Hopf Galois structure on L/K, then the K-subHopf algebras of H correspond to the ideals of A. Among the applications, we show that if G and Gamma are both elementary abelian p-groups, then the only Hopf Galois structure on L/K of type G for which the Galois correspondence is surjective is the classical Galois structure.
机构:
Univ Barcelona, Dept Algebra & Geometria, Gran Via de les Corts Catalans 585, E-08007 Barcelona, SpainUniv Barcelona, Dept Algebra & Geometria, Gran Via de les Corts Catalans 585, E-08007 Barcelona, Spain
Crespo, Teresa
Rio, Anna
论文数: 0引用数: 0
h-index: 0
机构:
Univ Politecn Cataluna, Dept Matemat, C Jordi Girona 1-3,Edifici Omega, E-08034 Barcelona, SpainUniv Barcelona, Dept Algebra & Geometria, Gran Via de les Corts Catalans 585, E-08007 Barcelona, Spain
Rio, Anna
Vela, Montserrat
论文数: 0引用数: 0
h-index: 0
机构:
Univ Politecn Cataluna, Dept Matemat, C Jordi Girona 1-3,Edifici Omega, E-08034 Barcelona, SpainUniv Barcelona, Dept Algebra & Geometria, Gran Via de les Corts Catalans 585, E-08007 Barcelona, Spain