On the Galois correspondence for Hopf Galois structures

被引:0
|
作者
Childs, Lindsay N. [1 ]
机构
[1] SUNY Albany, Dept Math & Stat, Albany, NY 12222 USA
来源
关键词
Hopf Galois extension; finite commutative nilpotent ring; Fundamental Theorem of Galois Theory; SEPARABLE FIELD-EXTENSIONS; RINGS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the question of the surjectivity of the Galois correspondence from subHopf algebras to subfields given by the Fundamental Theorem of Galois Theory for abelian Hopf Galois structures on a Galois extension of fields with Galois group Gamma, a finite abelian p-group. Applying the connection between regular subgroups of the holomorph of a finite abelian p-group (G, +) and associative, commutative nilpotent algebra structures A on (G, +), we show that if A gives rise to a H-Hopf Galois structure on L/K, then the K-subHopf algebras of H correspond to the ideals of A. Among the applications, we show that if G and Gamma are both elementary abelian p-groups, then the only Hopf Galois structure on L/K of type G for which the Galois correspondence is surjective is the classical Galois structure.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [1] Skew braces and the Galois correspondence for Hopf Galois structures
    Childs, Lindsay N.
    JOURNAL OF ALGEBRA, 2018, 511 : 270 - 291
  • [2] ON THE GALOIS CORRESPONDENCE THEOREM IN SEPARABLE HOPF GALOIS THEORY
    Crespo, Teresa
    Rio, Anna
    Vela, Montserrat
    PUBLICACIONS MATEMATIQUES, 2016, 60 (01) : 221 - 234
  • [3] INDUCED HOPF GALOIS STRUCTURES AND THEIR LOCAL HOPF GALOIS MODULES
    Gil-Munoz, Daniel
    Rio, Anna
    PUBLICACIONS MATEMATIQUES, 2022, 66 (01) : 99 - 128
  • [4] Galois extensions and Hopf-Galois structures
    Kohl, Timothy
    Underwood, Robert
    NEW YORK JOURNAL OF MATHEMATICS, 2025, 31 : 238 - 258
  • [5] Induced Hopf Galois structures
    Crespo, Teresa
    Rio, Anna
    Vela, Montserrat
    JOURNAL OF ALGEBRA, 2016, 457 : 312 - 322
  • [6] Hopf-Galois structures on a Galois Sn-extension
    Tsang, Cindy
    JOURNAL OF ALGEBRA, 2019, 531 : 349 - 360
  • [7] ON THE GALOIS CORRESPONDENCE FOR HOPF GALOIS STRUCTURES ARISING FROM FINITE RADICAL ALGEBRAS AND ZAPPA-SZEP PRODUCTS
    Childs, Lindsay N.
    PUBLICACIONS MATEMATIQUES, 2021, 65 (01) : 141 - 163
  • [8] A Hopf-Galois correspondence for free algebras
    Ferreira, VO
    Murakami, LSI
    Paques, A
    JOURNAL OF ALGEBRA, 2004, 276 (01) : 407 - 416
  • [9] Galois correspondence theorem for Hopf algebra actions
    Yanai, T
    Algebraic Structures and Their Representations, 2005, 376 : 393 - 411
  • [10] Hopf-Galois structures on finite extensions with quasisimple Galois group
    Tsang, Cindy
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2021, 53 (01) : 148 - 160