Digital Predistortion Based on a Compressed-Sensing Approach

被引:0
|
作者
Reina-Tosina, Javier [1 ]
Allegue-Martinez, Michel [1 ]
Madero-Ayora, Maria J. [1 ]
Crespo-Cadenas, Carlos [1 ]
Cruces, Sergio [1 ]
机构
[1] Univ Seville, Dept Signal Theory & Commun, Seville 41092, Spain
关键词
Behavioral modeling; compressed sensing; nonlinear distortion; power amplifiers; predistortion; MODEL;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A two-block structure is proposed for the digital predistortion (DPD) of power amplifiers (PAs), composed by a weakly nonlinear Volterra-based DPD with memory followed by a memoryless (ML) DPD, combined with the use of compressed-sensing (CS) techniques for the estimation of Volterra kernels. The ML-DPD is obtained from cubic smoothing splines fitted to the static inverse PA characteristic, while the memory-DPD uses a reduced set of coefficients of a fifth-order full Volterra (FV) model with fading memory. CS methods are utilized to find the support set of the active FV model coefficients. This approach has been applied to the DPD of a class J PA operating at 850 MHz with test signals following the LTE-downlink standard. Measurement results show an improvement of over 17 dB in the adjacent channel power ratio, an enhancement of the error vector magnitude from 9.7 % to 1.4 % and retaining only 35 % of the coefficients compared to the complete weakly FV DPD.
引用
收藏
页码:408 / 411
页数:4
相关论文
共 50 条
  • [1] Digital predistortion of power amplifiers using structured compressed-sensing Volterra series
    Antonio Becerra-Gonzalez, Juan
    Jose Madero-Ayora, Maria
    Reina-Tosina, Javier
    Crespo-Cadenas, Carlos
    [J]. ELECTRONICS LETTERS, 2017, 53 (02) : 89 - 90
  • [2] Dynamically-Collimated Digital Tomosynthesis Reconstruction by Using a Compressed-Sensing Based Algorithm
    Soyoung Park
    Guna Kim
    Hyosung Cho
    Changwoo Seo
    Minsik Lee
    [J]. Journal of the Korean Physical Society, 2020, 76 : 66 - 72
  • [3] Dynamically-Collimated Digital Tomosynthesis Reconstruction by Using a Compressed-Sensing Based Algorithm
    Park, Soyoung
    Kim, Guna
    Cho, Hyosung
    Seo, Changwoo
    Lee, Minsik
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2020, 76 (01) : 66 - 72
  • [4] A blind-deblurring method based on a compressed-sensing scheme in digital breast tomosynthesis
    Kim, K.
    Kim, W.
    Kang, S.
    Park, C.
    Lee, D.
    Cho, H.
    Seo, C.
    Lim, H.
    Lee, H.
    Kim, G.
    Park, S.
    Park, J.
    Jeon, D.
    Lim, Y.
    Woo, T.
    Oh, J.
    [J]. OPTICS AND LASERS IN ENGINEERING, 2018, 110 : 228 - 235
  • [5] Scout-view assisted interior digital tomosynthesis (iDTS) based on compressed-sensing theory
    Park, S. Y.
    Kim, G. A.
    Cho, H. S.
    Seo, C. W.
    Je, U. K.
    Park, C. K.
    Lim, H. W.
    Kim, K. S.
    Lee, D. Y.
    Lee, H. W.
    Kang, S. Y.
    Park, J. E.
    Woo, T. H.
    Lee, M. S.
    [J]. RADIATION PHYSICS AND CHEMISTRY, 2017, 141 : 29 - 35
  • [6] Compressed-Sensing MRI With Random Encoding
    Haldar, Justin P.
    Hernando, Diego
    Liang, Zhi-Pei
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2011, 30 (04) : 893 - 903
  • [7] Image reconstruction in region-of-interest (or interior) digital tomosynthesis (DTS) based on compressed-sensing (CS)
    Park, Soyoung
    Kim, Guna
    Cho, Hyosung
    Je, Uikyu
    Park, Chulkyu
    Kim, Kyuseok
    Lim, Hyunwoo
    Lee, Dongyeon
    Lee, Hunwoo
    Kang, Seokyoon
    Park, Jeongeun
    Woo, Taeho
    Lee, Minsik
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2017, 151 : 151 - 158
  • [8] Compressed-sensing wavenumber-scanning interferometry
    Bai, Yulei
    Zhou, Yanzhou
    He, Zhaoshui
    Ye, Shuangli
    Dong, Bo
    Xie, Shengli
    [J]. OPTICS AND LASER TECHNOLOGY, 2018, 98 : 229 - 233
  • [9] Structured Compressed-Sensing for Volterra Series Models
    Becerra, Juan A.
    Madero-Ayora, Maria J.
    Reina-Tosina, Javier
    Crespo-Cadenas, Carlos
    [J]. 2016 IEEE 17TH ANNUAL WIRELESS AND MICROWAVE TECHNOLOGY CONFERENCE (WAMICON), 2016,
  • [10] Compressed-Sensing MRI Based on Adaptive Tight Frame in Gradient Domain
    Xiaoyu Fan
    Qiusheng Lian
    Baoshun Shi
    [J]. Applied Magnetic Resonance, 2018, 49 : 465 - 477