Improved Multi-objective Ant Colony Optimization Algorithm and Its Application in Complex Reasoning

被引:5
|
作者
Wang Xinqing [1 ]
Zhao Yang [1 ]
Wang Dong [1 ]
Zhu Huijie [1 ]
Zhang Qing [2 ]
机构
[1] Univ Sci & Technol, Chinese Peoples Liberat Army, Nanjing 210007, Jiangsu, Peoples R China
[2] Tianjin Univ, Sch Mech Engn, Tianjin 300072, Peoples R China
关键词
fault reasoning; ant colony algorithm; Pareto set; multi-objective optimization; complex system; GENETIC ALGORITHMS; SYSTEMS;
D O I
10.3901/CJME.2013.05.1031
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The problem of fault reasoning has aroused great concern in scientific and engineering fields. However, fault investigation and reasoning of complex system is not a simple reasoning decision-making problem. It has become a typical multi-constraint and multi-objective reticulate optimization decision-making problem under many influencing factors and constraints. So far, little research has been carried out in this field. This paper transforms the fault reasoning problem of complex system into a paths-searching problem starting from known symptoms to fault causes. Three optimization objectives are considered simultaneously: maximum probability of average fault, maximum average importance, and minimum average complexity of test. Under the constraints of both known symptoms and the causal relationship among different components, a multi-objective optimization mathematical model is set up, taking minimizing cost of fault reasoning as the target function. Since the problem is non-deterministic polynomial-hard(NP-hard), a modified multi-objective ant colony algorithm is proposed, in which a reachability matrix is set up to constrain the feasible search nodes of the ants and a new pseudo-random-proportional rule and a pheromone adjustment mechinism are constructed to balance conflicts between the optimization objectives. At last, a Pareto optimal set is acquired. Evaluation functions based on validity and tendency of reasoning paths are defined to optimize noninferior set, through which the final fault causes can be identified according to decision-making demands, thus realize fault reasoning of the multi-constraint and multi-objective complex system. Reasoning results demonstrate that the improved multi-objective ant colony optimization(IMACO) can realize reasoning and locating fault positions precisely by solving the multi-objective fault diagnosis model, which provides a new method to solve the problem of multi-constraint and multi-objective fault diagnosis and reasoning of complex system.
引用
收藏
页码:1031 / 1040
页数:10
相关论文
共 50 条
  • [21] Multi-objective Ant Colony Optimization Algorithm Based on Load Balance
    Zhu, Liwen
    Tang, Ruichun
    Tao, Ye
    Ren, Meiling
    Xue, Lulu
    CLOUD COMPUTING AND SECURITY, ICCCS 2016, PT I, 2016, 10039 : 193 - 205
  • [22] Multi-Objective Optimization of Smart Grid Based on Ant Colony Algorithm
    Shi, Zhongsheng
    Kumar, Rajiv
    Tomar, Ravi
    ELECTRICA, 2022, 22 (03): : 395 - 402
  • [23] Urban Projects Planning by Multi-objective Ant Colony Optimization Algorithm
    Khelifa, Boudjemaa
    Laouar, Mohamed Ridda
    ICIST '18: PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS AND TECHNOLOGIES, 2018,
  • [24] Multi-objective Ant Colony Optimization: Review
    Awadallah, Mohammed A.
    Makhadmeh, Sharif Naser
    Al-Betar, Mohammed Azmi
    Dalbah, Lamees Mohammad
    Al-Redhaei, Aneesa
    Kouka, Shaimaa
    Enshassi, Oussama S.
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2025, 32 (02) : 995 - 1037
  • [25] Multi-objective ant colony optimization algorithm based on decomposition for community detection in complex networks
    Mu, Caihong
    Zhang, Jian
    Liu, Yi
    Qu, Rong
    Huang, Tianhuan
    SOFT COMPUTING, 2019, 23 (23) : 12683 - 12709
  • [26] Ant colony optimization for multi-objective optimization problems
    Alaya, Ines
    Solnon, Christine
    Ghedira, Khaled
    19TH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, VOL I, PROCEEDINGS, 2007, : 450 - 457
  • [27] Multi-objective ant colony optimization algorithm based on decomposition for community detection in complex networks
    Caihong Mu
    Jian Zhang
    Yi Liu
    Rong Qu
    Tianhuan Huang
    Soft Computing, 2019, 23 : 12683 - 12709
  • [28] Research on an improved ant colony optimization algorithm and its application
    1600, Science and Engineering Research Support Society (09):
  • [29] A Quantum Ant Colony Multi-Objective Routing Algorithm in WSN and Its Application in a Manufacturing Environment
    Li, Fei
    Liu, Min
    Xu, Gaowei
    SENSORS, 2019, 19 (15)
  • [30] A Modified Pareto Strength Ant Colony Optimization Algorithm for the Multi-objective Optimization Problems
    Ariyasingha, I. D. I. D.
    Fernando, T. G. I.
    2016 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION FOR SUSTAINABILITY (ICIAFS): INTEROPERABLE SUSTAINABLE SMART SYSTEMS FOR NEXT GENERATION, 2016,