On bi-nonlocal problem for elliptic equations with Neumann boundary conditions

被引:7
|
作者
Chabrowski, J. [1 ]
机构
[1] Univ Queensland, Dept Math, St Lucia, Qld 4072, Australia
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2018年 / 134卷 / 01期
关键词
CRITICAL SOBOLEV EXPONENTS; KIRCHHOFF-TYPE; NONTRIVIAL SOLUTIONS; POSITIVE SOLUTIONS; EXISTENCE; MULTIPLICITY;
D O I
10.1007/s11854-018-0011-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence of positive solutions for a nonlocal problem (1.2) with Neumann boundary conditions. We distinguish two cases: 2 < p < 2* (subcritical) and p = 2* (critical). The existence of solutions is established by variational methods.
引用
下载
收藏
页码:303 / 334
页数:32
相关论文
共 50 条
  • [41] The Neumann problem for nonlocal nonlinear diffusion equations
    Fuensanta Andreu
    José M. Mazón
    Julio D. Rossi
    Julián Toledo
    Journal of Evolution Equations, 2008, 8 : 189 - 215
  • [42] Quasilinear Elliptic Equations with Neumann Boundary and Singularity
    Kou, Bing-yu
    Peng, Shuang-jie
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2009, 25 (04): : 631 - 646
  • [43] The Neumann problem for nonlocal nonlinear diffusion equations
    Andreu, Fuensanta
    Mazon, Jose M.
    Rossi, Julio D.
    Toledo, Julian
    JOURNAL OF EVOLUTION EQUATIONS, 2008, 8 (01) : 189 - 215
  • [44] On a nonlocal diffusion model with Neumann boundary conditions
    Bogoya, Mauricio
    Gomez S, Cesar A.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (06) : 3198 - 3209
  • [45] The Dirichlet problem for nonlocal elliptic equations
    Tian, Rongrong
    Wei, Jinlong
    Tang, Yanbin
    APPLICABLE ANALYSIS, 2021, 100 (10) : 2093 - 2107
  • [46] Boundary control of non-well-posed elliptic equations with nonlinear Neumann boundary conditions
    Luan, Shu
    Gao, Hang
    Xu, Peng
    OPTIMIZATION LETTERS, 2012, 6 (04) : 695 - 708
  • [47] Boundary control of non-well-posed elliptic equations with nonlinear Neumann boundary conditions
    Shu Luan
    Hang Gao
    Peng Xu
    Optimization Letters, 2012, 6 : 695 - 708
  • [48] Existence of solutions for a bi-nonlocal fractional p-Kirchhoff type problem
    Xiang, Mingqi
    Zhang, Binlin
    Radulescu, Vicentiu D.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (01) : 255 - 266
  • [49] ON POSITIVE SOLUTIONS OF A LINEAR ELLIPTIC EIGENVALUE PROBLEM WITH NEUMANN BOUNDARY-CONDITIONS
    SENN, S
    HESS, P
    MATHEMATISCHE ANNALEN, 1982, 258 (04) : 459 - 470
  • [50] EIGENVALUE PROBLEMS FOR A CLASS OF BI-NONLOCAL EQUATIONS IN ORLICZ-SOBOLEV SPACES
    Nguyen Thanh Chung
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2020, 2020