Nanowire photodetectors based on wurtzite semiconductor heterostructures

被引:30
|
作者
Spies, Maria [1 ]
Monroy, Eva [2 ]
机构
[1] Univ Grenoble Alpes, Inst Neel, CNRS, 25 Av Martyrs, F-38000 Grenoble, France
[2] Univ Grenoble Alpes, IRIG PHELIQS, CEA, 17 Av Martyrs, F-38000 Grenoble, France
关键词
nanowire; photodetector; heterostructure; wurtzite; DETAILED BALANCE LIMIT; SELECTIVE-AREA GROWTH; SOLAR-CELLS; OPTICAL-PROPERTIES; GAAS NANOWIRES; ZNO NANOWIRE; QUANTUM DOTS; GAN; EFFICIENCY; ULTRAVIOLET;
D O I
10.1088/1361-6641/ab0cb8
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Using nanowires for photodetection constitutes an opportunity to enhance the absorption efficiency while reducing the electrical cross-section of the device. Nanowires present interesting features like compatibility with silicon substrates, which offers the possibility of integrating detector and readout circuitry and facilitates their transfer to flexible substrates. The incorporation of heterostructures in nanowire photodetectors opens interesting prospects for application and performance improvement. Within a nanowire, it is possible to implement axial and radial (core-shell) heterostructures, and these two types can be combined to obtain the three-dimensional carrier confinement (dot-in-a-wire) which is required for the development of quantum photodetectors. If the nanowires present wurtzite crystallographic structure, the presence of heterointerfaces can induce internal electric fields due to the difference of polarization between the constituents. Such polarization-induced internal electric fields, like those induced by heterojunctions or type-II heterostructures, can be ingeneered to favor the separation of the photogenerated electrons and holes. This paper provides a general review of latest progresses in nanowire photodetectors, including single nanowires and heterostructured nanowires.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Graphene-Based Semiconductor Heterostructures for Photodetectors
    Shin, Dong Hee
    Choi, Suk-Ho
    MICROMACHINES, 2018, 9 (07)
  • [2] Semiconductor nanowire heterostructures
    Lauhon, LJ
    Gudiksen, MS
    Lieber, CM
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2004, 362 (1819): : 1247 - 1260
  • [3] Compound Semiconductor Nanowire Photodetectors
    Dai, Xing
    Tchernycheva, Maria
    Soci, Cesare
    SEMICONDUCTORS AND SEMIMETALS, VOL 94: SEMICONDUCTOR NANOWIRES II: PROPERTIES AND APPLICATIONS, 2016, 94 : 75 - 107
  • [4] The Novel Semiconductor Nanowire Heterostructures
    JQHu
    YBando
    JHZhan
    DGolberg
    复旦学报(自然科学版), 2007, (05) : 712 - 713
  • [5] Recent Advances in Semiconductor Nanowire Heterostructures
    Jackson, Howard E.
    Smith, Leigh M.
    Jagadish, Chennupati
    STATE-OF-THE-ART PROGRAM ON COMPOUND SEMICONDUCTORS 56 (SOTAPOCS 56), 2014, 64 (17): : 1 - 5
  • [6] Recent advances in semiconductor nanowire heterostructures
    Johansson, Jonas
    Dick, Kimberly A.
    CRYSTENGCOMM, 2011, 13 (24): : 7175 - 7184
  • [7] Nanowire photodetectors with embedded quantum heterostructures for infrared detection
    Karimi, Mohammad
    Heurlin, Magnus
    Limpert, Steven
    Jain, Vishal
    Mansouri, Ebrahim
    Zeng, Xulu
    Samuelson, Lars
    Linke, Heiner
    Borgstrom, Magnus T.
    Pettersson, Halan
    INFRARED PHYSICS & TECHNOLOGY, 2019, 96 : 209 - 212
  • [8] III-V Semiconductor Nanowire Photodetectors
    Jagadish, Chennupati
    2019 IEEE PHOTONICS CONFERENCE (IPC), 2019,
  • [9] Elastic and Piezoelectric Properties of Zincblende and Wurtzite Crystalline Nanowire Heterostructures
    Boxberg, Fredrik
    Sondergaard, Niels
    Xu, H. Q.
    ADVANCED MATERIALS, 2012, 24 (34) : 4692 - 4706
  • [10] INOR 1004-Solution-based growth of semiconductor nanowire heterostructures
    Dong, Angang
    Buhro, William E.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 234