Redei's Triple Symbols and Modular Forms

被引:1
|
作者
Amano, Fumiya [1 ]
Kodani, Hisatoshi [1 ]
Morishita, Masanori [1 ]
Sakamoto, Takayuki [1 ]
Yoshida, Takafumi [1 ]
Ogasawara, Takeshi [1 ]
机构
[1] Kyushu Univ, Fukuoka 8190395, Japan
基金
日本学术振兴会;
关键词
IMAGINARY QUADRATIC FIELDS; NUMBERS;
D O I
10.3836/tjm/1391177979
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1939, L. Redei introduced a certain triple symbol in order to generalize the Legendre symbol and Gauss' genus theory. Redei's triple symbol [a(1), a(2), p] describes the decomposition law of a prime number p in a certain dihedral extension over Q of degree 8 determined by a(1) and a(2). In this paper, we show that the triple symbol [-p(1), p(2), p(3)] for certain prime numbers p(1), p(2) and p(3) can be expressed as a Fourier coefficient of a modular form of weight one. For this, we employ Hecke's theory on theta series associated to binary quadratic forms and realize an explicit version of the theorem by Weil-Langlands and Deligne-Serre for Redei's dihedral extensions. A reciprocity law for the Redei triple symbols yields certain reciprocal relations among Fourier coefficients.
引用
收藏
页码:405 / 427
页数:23
相关论文
共 50 条
  • [31] Arithmetic statistics of modular symbols
    Yiannis N. Petridis
    Morten S. Risager
    Inventiones mathematicae, 2018, 212 : 997 - 1053
  • [32] Modular Symbols and Petersson Product
    Bernardi, Dominique
    Perrin-Riou, Bernadette
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2020, 32 (03): : 795 - 859
  • [33] Modular Forms and Weierstrass Mock Modular Forms
    Clemm, Amanda
    MATHEMATICS, 2016, 4 (01):
  • [34] MOCK MODULAR FORMS AND QUANTUM MODULAR FORMS
    Choi, Dohoon
    Lim, Subong
    Rhoades, Robert C.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (06) : 2337 - 2349
  • [35] MODULAR SYMBOLS FOR FERMAT CURVES
    Ejder, Ozlem
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (06) : 2305 - 2319
  • [36] Modular symbols for Teichmuller curves
    McMullen, Curtis T.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2021, 777 : 89 - 125
  • [37] Arithmetic statistics of modular symbols
    Petridis, Yiannis N.
    Risager, Morten S.
    INVENTIONES MATHEMATICAE, 2018, 212 (03) : 997 - 1053
  • [38] A NOTE ON MINIMAL MODULAR SYMBOLS
    ASH, A
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 96 (03) : 394 - 396
  • [39] The Eisenstein cycles as modular symbols
    Banerjee, Debargha
    Merel, Loic
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2018, 98 : 329 - 348
  • [40] Noncommutative Hilbert modular symbols
    Horozov, Ivan
    ALGEBRA & NUMBER THEORY, 2015, 9 (02) : 317 - 370