Hilbert geometry for strictly convex domains

被引:24
|
作者
Colbois, B
Verovic, P
机构
[1] Univ Neuchatel, Inst Math, CH-2007 Neuchatel, Switzerland
[2] Univ Savoie, Math Lab, F-73376 Le Bourget Du Lac, France
关键词
convex sets; Finsler spaces; metric geometry;
D O I
10.1023/B:GEOM.0000024687.23372.b0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove in this paper that the Hilbert geometry associated with a bounded open convex domain C in R-n whose boundary partial derivativeC is a C-2 hypersuface with nonvanishing Gaussian curvature is bi-Lipschitz equivalent to the n-dimensional hyperbolic space H-n. Moreover, we show that the balls in such a Hilbert geometry have the same volume growth entropy as those in H-n.
引用
收藏
页码:29 / 42
页数:14
相关论文
共 50 条