Spectral edge regularity of magnetic Hamiltonians

被引:8
|
作者
Cornean, Horia D. [1 ]
Purice, Radu [2 ,3 ]
机构
[1] Aalborg Univ, Dept Math Sci, DK-9220 Aalborg, Denmark
[2] Romanian Acad, Inst Math Simion Stoilow, RO-14700 Bucharest, Romania
[3] CNRS Franco Roumain Math Mode, Lab European Associe, Bucharest, Romania
关键词
LIPSCHITZ CONTINUITY; SCHRODINGER; OPERATORS; STABILITY; PARTICLE; GAPS;
D O I
10.1112/jlms/jdv019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We analyse the spectral edge regularity of a large class of magnetic Hamiltonians when the perturbation is generated by a globally bounded magnetic field. We can prove Lipschitz regularity of spectral edges if the magnetic field perturbation is either constant or slowly variable. We also recover an older result by G. Nenciu who proved Lipschitz regularity up to a logarithmic factor for general globally bounded magnetic field perturbations.
引用
收藏
页码:89 / 104
页数:16
相关论文
共 50 条
  • [21] Effective Magnetic Hamiltonians
    V. Drchal
    J. Kudrnovský
    I. Turek
    Journal of Superconductivity and Novel Magnetism, 2013, 26 : 1997 - 2000
  • [22] Effective Magnetic Hamiltonians
    Drchal, V.
    Kudrnovsky, J.
    Turek, I.
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2013, 26 (05) : 1997 - 2000
  • [23] Spectral structure of Anderson type Hamiltonians
    Vojkan Jakšić
    Yoram Last
    Inventiones mathematicae, 2000, 141 : 561 - 577
  • [24] On the spectral theory of tensor product Hamiltonians
    Damak, Mondher
    JOURNAL OF OPERATOR THEORY, 2006, 55 (02) : 253 - 268
  • [25] Spectral Properties for Hamiltonians of Weak Interactions
    Barbaroux, Jean-Marie
    Faupin, Jeremy
    Guillot, Jean-Claude
    SPECTRAL THEORY AND MATHEMATICAL PHYSICS, 2016, 254 : 11 - 36
  • [26] SPECTRAL THEORY OF NO-PAIR HAMILTONIANS
    Matte, Oliver
    Stockmeyer, Edgardo
    REVIEWS IN MATHEMATICAL PHYSICS, 2010, 22 (01) : 1 - 53
  • [27] Spectral structure of Anderson type Hamiltonians
    Jaksic, V
    Last, Y
    INVENTIONES MATHEMATICAE, 2000, 141 (03) : 561 - 577
  • [28] Spectral analysis of tridiagonal Fibonacci Hamiltonians
    Yessen, William N.
    JOURNAL OF SPECTRAL THEORY, 2013, 3 (01) : 101 - 128
  • [29] On the spectral analysis of quantum field Hamiltonians
    Georgescu, Vladimir
    JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 245 (01) : 89 - 143
  • [30] SPECTRAL PROPERTIES OF REDUCED BLOCH HAMILTONIANS
    AVRON, JE
    GROSSMANN, A
    RODRIGUEZ, R
    ANNALS OF PHYSICS, 1977, 103 (01) : 47 - 63