Hierarchical Bayesian Spatio-Temporal Conway-Maxwell Poisson Models with Dynamic Dispersion

被引:18
|
作者
Wu, Guohui [1 ]
Holan, Scott H. [1 ]
Wikle, Christopher K. [1 ]
机构
[1] Univ Missouri, Dept Stat, Columbia, MO 65211 USA
基金
美国国家科学基金会;
关键词
Count data; Empirical orthogonal functions; Hierarchical model; Kernel principal component analysis; Nonlinear; Overdispersion; Threshold vector autoregressive model; Underdispersion; COUNT DATA; REGRESSION-MODEL;
D O I
10.1007/s13253-013-0141-2
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Modeling spatio-temporal count processes is often a challenging endeavor. That is, in many real-world applications the complexity and high-dimensionality of the data and/or process do not allow for routine model specification. For example, spatio-temporal count data often exhibit temporally varying over/underdispersion within the spatial domain. In order to accommodate such structure, while quantifying different sources of uncertainty, we propose a Bayesian spatio-temporal Conway-Maxwell Poisson (CMP) model with dynamic dispersion. Motivated by the problem of predicting migratory bird settling patterns, we propose a threshold vector-autoregressive model for the CMP intensity parameter that allows for regime switching based on climate conditions. Additionally, to reduce the inherent high-dimensionality of the underlying process, we consider nonlinear dimension reduction through kernel principal component analysis. Finally, we demonstrate the effectiveness of our approach through out-of-sample one-year-ahead prediction of waterfowl migratory patterns across the United States and Canada. The proposed approach is of independent interest and illustrates the potential benefits of dynamic dispersion in terms of superior forecasting. This article has supplementary material online.
引用
收藏
页码:335 / 356
页数:22
相关论文
共 50 条
  • [21] BAYESIAN MODELS FOR SPATIO-TEMPORAL ASSESSMENT OF DISEASE
    Kang, Su Yun
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2015, 91 (03) : 516 - 518
  • [22] Bayesian spatio-temporal models for stream networks
    Santos-Fernandez, Edgar
    Ver Hoef, Jay M. E.
    Peterson, Erin
    McGree, James J.
    Isaak, Daniel
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 170
  • [23] Kibria-Lukman estimator for the Conway-Maxwell Poisson regression model: Simulation and applications
    Abonazel, Mohamed R.
    Saber, Ashrakat Adel
    Awwad, Fuad A.
    SCIENTIFIC AFRICAN, 2023, 19
  • [24] A Bayesian analysis of the Conway–Maxwell–Poisson cure rate model
    Vicente G. Cancho
    Mário de Castro
    Josemar Rodrigues
    Statistical Papers, 2012, 53 : 165 - 176
  • [25] New modified two-parameter Liu estimator for the Conway-Maxwell Poisson regression model
    Abonazel, Mohamed R.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (12) : 1976 - 1996
  • [26] A hierarchical Bayesian spatio-temporal model for extreme precipitation events
    Ghosh, Souparno
    Mallick, Bani K.
    ENVIRONMETRICS, 2011, 22 (02) : 192 - 204
  • [27] Bayesian Spatio-temporal Hierarchical Modeling in Wind Speed Data
    Lee, Chee Nian
    Ong, Hong Choon
    PROCEEDINGS OF THE 24TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM24): MATHEMATICAL SCIENCES EXPLORATION FOR THE UNIVERSAL PRESERVATION, 2017, 1870
  • [28] Bayesian hierarchical spatio-temporal smoothing for very large datasets
    Katzfuss, Matthias
    Cressie, Noel
    ENVIRONMETRICS, 2012, 23 (01) : 94 - 107
  • [29] Bayesian spatio-temporal models based on discrete convolutions
    Sanso, Bruno
    Schmidt, Alexandra M.
    Nobre, Aline A.
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2008, 36 (02): : 239 - 258
  • [30] Fast Bayesian Inference for Spatial Mean-Parameterized Conway-Maxwell-Poisson Models
    Kang, Bokgyeong
    Hughes, John
    Haran, Murali
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2024,