Minimal Extending Sets in Tournaments

被引:0
|
作者
Brandt, Felix [1 ]
Harrenstein, Paul [2 ]
Seedig, Hans Georg [1 ]
机构
[1] Tech Univ Munich, Inst Informat, Munich, Germany
[2] Univ Oxford, Dept Comp Sci, Oxford, England
关键词
Tournament solutions; Banks set; Minimal extending set;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In 2011, Brandt proposed a new tournament solution called the minimal extending set (ME). It was conjectured that ME satisfies a large number of desirable properties. In this paper, we non-constructively show that ME fails to satisfy most of these properties. However, no concrete examples of these violations are known and it appears that ME satisfies these properties for all practical purposes. This casts doubt on the axiomatic method.
引用
收藏
页码:1539 / 1540
页数:2
相关论文
共 50 条
  • [21] Acyclic sets in k-majority tournaments
    Milans, Kevin G.
    Schreiber, Daniel H.
    West, Douglas B.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [22] Locating-dominating sets in local tournaments
    Bellitto, Thomas
    Brosse, Caroline
    Leveque, Benjamin
    Parreau, Aline
    DISCRETE APPLIED MATHEMATICS, 2023, 337 : 14 - 24
  • [24] Absorbing sets in arc-coloured tournaments
    Hahn, G
    Ille, P
    Woodrow, RE
    DISCRETE MATHEMATICS, 2004, 283 (1-3) : 93 - 99
  • [25] SCORE SETS IN k-PARTITE TOURNAMENTS
    Pirzada, S.
    Naikoo, T. A.
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2006, 22 (1-2) : 237 - 245
  • [26] Packing Feedback Arc Sets in Tournaments Exactly
    Chen, Xujin
    Ding, Guoli
    Zang, Wenan
    Zhao, Qiulan
    MATHEMATICS OF OPERATIONS RESEARCH, 2024, 49 (01) : 151 - 170
  • [27] Dominating sets in k-majority tournaments
    Alon, N
    Brightwell, G
    Kierstead, HA
    Kostochka, AV
    Winkler, P
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2006, 96 (03) : 374 - 387
  • [28] An approximation algorithm or feedback vertex sets in tournaments
    Cai, MC
    Deng, XT
    Zang, WN
    SIAM JOURNAL ON COMPUTING, 2001, 30 (06) : 1993 - 2007
  • [29] EXTENDING MINIMAL VARIETIES
    HARVEY, R
    LAWSON, B
    INVENTIONES MATHEMATICAE, 1975, 28 (03) : 209 - 226
  • [30] Minimal Sets
    Kreh, Martin
    JOURNAL OF INTEGER SEQUENCES, 2015, 18 (05)