Integrable cocycles and global deformations of Lie algebra of type G2 in characteristic 2

被引:7
|
作者
Chebochko, N. G. [1 ]
Kuznetsov, M. I. [1 ]
机构
[1] Nizhnii Novgorod State Univ, Dept Algebra Geometry & Discrete Math, Inst Informat Technol Math & Mech, Gagarin Ave,23 Bldg 6, Nizhnii Novgorod 603050, Russia
关键词
Automorphism group; classical Lie algebra; deformation; field of characteristic 2; Grassmanian; integrable cocycle; Lie algebra cohomology; Lie algebra of Cartan type;
D O I
10.1080/00927872.2016.1233241
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
All classes of integrable cocycles in H-2(L, L) are obtained for Lie algebra of type G(2) over an algebraically closed field of characteristic 2. It is proved that there exist only two orbits of classes of integrable cocycles with respect to automorphism group. The global deformation is shown to exist for any nontrivial class of integrable cocycles. These deformations are isomorphic to one of the two algebras of Cartan type, one of which being S(3 : 1, omega) while the other H(4 : 1, omega).
引用
收藏
页码:2969 / 2977
页数:9
相关论文
共 50 条
  • [21] COHOMOLOGY FOR THE LIE ALGEBRA OF TYPE A2 OVER A FIELD OF CHARACTERISTIC 2
    Ibraev, Sh Sh
    Turbayev, B. T.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2021, 18 : 729 - 739
  • [23] THE GENERATING FUNCTION OF BIVARIATE CHEBYSHEV POLYNOMIALS ASSOCIATED WITH THE LIE ALGEBRA G2
    Damaskinsky, E. V.
    Sokolov, M. A.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2017, 192 (02) : 1115 - 1128
  • [24] Weight q-multiplicities for representations of the exceptional Lie algebra g2
    Cockerham, Jerrell
    Gonzalez, Melissa Gutierrez
    Harris, Pamela E.
    Loving, Marissa
    Minino, Amaury, V
    Rennie, Joseph
    Kirby, Gordon Rojas
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2020, 27 (05) : 641 - 662
  • [25] The generating function of bivariate Chebyshev polynomials associated with the Lie algebra G2
    E. V. Damaskinsky
    M. A. Sokolov
    Theoretical and Mathematical Physics, 2017, 192 : 1115 - 1128
  • [26] Solvability of the G2 integrable system
    Rosenbaum, M
    Turbiner, A
    Capella, A
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1998, 13 (22): : 3885 - 3903
  • [27] DEFORMATIONS OF THE HAMILTONIAN LIE-ALGEBRA-H(2)
    KOCHETKOV, YY
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1994, 28 (03) : 211 - 213
  • [28] Deformations of nearly G2 structures
    Nagy, Paul-Andi
    Semmelmann, Uwe
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2021, 104 (04): : 1795 - 1811
  • [29] Deformations of Lie algebras of Type Dn and Their Factoralgebras over the Field of Characteristic 2
    Chebochko, N. G.
    RUSSIAN MATHEMATICS, 2021, 65 (08) : 75 - 78
  • [30] Deformations of Lie algebras of Type Dn and Their Factoralgebras over the Field of Characteristic 2
    N. G. Chebochko
    Russian Mathematics, 2021, 65 : 75 - 78