Integrable cocycles and global deformations of Lie algebra of type G2 in characteristic 2

被引:7
|
作者
Chebochko, N. G. [1 ]
Kuznetsov, M. I. [1 ]
机构
[1] Nizhnii Novgorod State Univ, Dept Algebra Geometry & Discrete Math, Inst Informat Technol Math & Mech, Gagarin Ave,23 Bldg 6, Nizhnii Novgorod 603050, Russia
关键词
Automorphism group; classical Lie algebra; deformation; field of characteristic 2; Grassmanian; integrable cocycle; Lie algebra cohomology; Lie algebra of Cartan type;
D O I
10.1080/00927872.2016.1233241
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
All classes of integrable cocycles in H-2(L, L) are obtained for Lie algebra of type G(2) over an algebraically closed field of characteristic 2. It is proved that there exist only two orbits of classes of integrable cocycles with respect to automorphism group. The global deformation is shown to exist for any nontrivial class of integrable cocycles. These deformations are isomorphic to one of the two algebras of Cartan type, one of which being S(3 : 1, omega) while the other H(4 : 1, omega).
引用
收藏
页码:2969 / 2977
页数:9
相关论文
共 50 条
  • [1] Lie algebra deformations in characteristic 2
    Bouarroudj, Sofiane
    Lebedev, Alexei
    Leites, Dimitry
    Shchepochkina, Irina
    MATHEMATICAL RESEARCH LETTERS, 2015, 22 (02) : 353 - 402
  • [2] Global Deformations of a Lie Algebra of Type (A)over-bar5 in Characteristic 2
    Kuznetsov, M. I.
    Chebochko, N. G.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2020, 41 (02) : 238 - 242
  • [3] The nullcone of the Lie algebra of G2
    Hesselink, Wim H.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2019, 30 (04): : 623 - 648
  • [4] The Direct Sum Decomposition of Type G2 Lie Algebra
    Zhu Xiao-yuan
    Hao Hong-hua
    Xin Bin
    CommunicationsinMathematicalResearch, 2019, 35 (01) : 10 - 20
  • [5] CRYSTAL B(λ) IN B(∞) FOR G2 TYPE LIE ALGEBRA
    Kim, Min Kyu
    Lee, Hyeonmi
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (02) : 427 - 442
  • [6] Vertex representations for toroidal Lie algebra of type G2
    Liu, D
    Hua, NH
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2005, 198 (1-3) : 257 - 279
  • [7] Notes on G2: The Lie algebra and the Lie group
    Draper Fontanals, Cristina
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2018, 57 : 23 - 74
  • [8] Exact solution of a quantum integrable system associated with the G2 exceptional Lie algebra
    Li, Guang-Liang
    Cao, Junpeng
    Sun, Pei
    Yang, Wen-Li
    Shi, Kangjie
    Wang, Yupeng
    NUCLEAR PHYSICS B, 2025, 1010
  • [9] Generalized Verma modules over the Lie algebra of type G2
    Khomenko, A
    Mazorchuk, V
    COMMUNICATIONS IN ALGEBRA, 1999, 27 (02) : 777 - 783
  • [10] Segal-Sugawara vectors for the Lie algebra of type G2
    Molev, A. I.
    Ragoucy, E.
    Rozhkovskaya, N.
    JOURNAL OF ALGEBRA, 2016, 455 : 386 - 401